Distances in probability space and the statistical complexity setup

Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this rev...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowalski, Andrés, Martín, María Teresa, Plastino, Ángel Luis, Rosso, Osvaldo A., Casas, Montserrat
Formato: Articulo
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/38178
http://www.mdpi.com/1099-4300/13/6/1055
Aporte de:
id I19-R120-10915-38178
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
disequilibrium
generalized statistical complexity
information theory
quantum chaos
selection of the probability distribution
semiclassical theories
spellingShingle Ciencias Exactas
Física
disequilibrium
generalized statistical complexity
information theory
quantum chaos
selection of the probability distribution
semiclassical theories
Kowalski, Andrés
Martín, María Teresa
Plastino, Ángel Luis
Rosso, Osvaldo A.
Casas, Montserrat
Distances in probability space and the statistical complexity setup
topic_facet Ciencias Exactas
Física
disequilibrium
generalized statistical complexity
information theory
quantum chaos
selection of the probability distribution
semiclassical theories
description Statistical complexity measures (SCM) are the composition of two ingredients: (i) entropies and (ii) distances in probability-space. In consequence, SCMs provide a simultaneous quantification of the randomness and the correlational structures present in the system under study. We address in this review important topics underlying the SCM structure, viz., (a) a good choice of probability metric space and (b) how to assess the best distance-choice, which in this context is called a "disequilibrium" and is denoted with the letter Q. Q, indeed the crucial SCM ingredient, is cast in terms of an associated distance D. Since out input data consists of time-series, we also discuss the best way of extracting from the time series a probability distribution P. As an illustration, we show just how these issues affect the description of the classical limit of quantum mechanics.
format Articulo
Articulo
author Kowalski, Andrés
Martín, María Teresa
Plastino, Ángel Luis
Rosso, Osvaldo A.
Casas, Montserrat
author_facet Kowalski, Andrés
Martín, María Teresa
Plastino, Ángel Luis
Rosso, Osvaldo A.
Casas, Montserrat
author_sort Kowalski, Andrés
title Distances in probability space and the statistical complexity setup
title_short Distances in probability space and the statistical complexity setup
title_full Distances in probability space and the statistical complexity setup
title_fullStr Distances in probability space and the statistical complexity setup
title_full_unstemmed Distances in probability space and the statistical complexity setup
title_sort distances in probability space and the statistical complexity setup
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/38178
http://www.mdpi.com/1099-4300/13/6/1055
work_keys_str_mv AT kowalskiandres distancesinprobabilityspaceandthestatisticalcomplexitysetup
AT martinmariateresa distancesinprobabilityspaceandthestatisticalcomplexitysetup
AT plastinoangelluis distancesinprobabilityspaceandthestatisticalcomplexitysetup
AT rossoosvaldoa distancesinprobabilityspaceandthestatisticalcomplexitysetup
AT casasmontserrat distancesinprobabilityspaceandthestatisticalcomplexitysetup
bdutipo_str Repositorios
_version_ 1764820472368726020