An application of ARX stochastic models to iris recognition

We present a new approach for iris recognition based on stochastic autoregressive models with exogenous input (ARX). Iris recognition is a method to identify persons, based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: image acquisition and preproces...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Garza Castañon, Luis E., Montes de Oca, Saúl, Morales Menéndez, Rubén
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/24249
Aporte de:
id I19-R120-10915-24249
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Biometría
iris recognition systems
spellingShingle Ciencias Informáticas
Biometría
iris recognition systems
Garza Castañon, Luis E.
Montes de Oca, Saúl
Morales Menéndez, Rubén
An application of ARX stochastic models to iris recognition
topic_facet Ciencias Informáticas
Biometría
iris recognition systems
description We present a new approach for iris recognition based on stochastic autoregressive models with exogenous input (ARX). Iris recognition is a method to identify persons, based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: image acquisition and preprocessing, iris localization and extraction, iris features characterization, and comparison and matching. The main contribution in this work is given in the step of characterization of iris features by using ARX models. In our work every iris in database is represented by an ARX model learned from data. In the comparison and matching step, data taken from iris sample are substituted into every ARX model and residuals are generated. A decision of accept or reject is taken based on residuals and on a threshold calculated experimentally. We conduct experiments with two different databases. Under certain conditions, we found a rate of successful identifications in the order of 99.7 % for one database and 100 % for the other.
format Objeto de conferencia
Objeto de conferencia
author Garza Castañon, Luis E.
Montes de Oca, Saúl
Morales Menéndez, Rubén
author_facet Garza Castañon, Luis E.
Montes de Oca, Saúl
Morales Menéndez, Rubén
author_sort Garza Castañon, Luis E.
title An application of ARX stochastic models to iris recognition
title_short An application of ARX stochastic models to iris recognition
title_full An application of ARX stochastic models to iris recognition
title_fullStr An application of ARX stochastic models to iris recognition
title_full_unstemmed An application of ARX stochastic models to iris recognition
title_sort application of arx stochastic models to iris recognition
publishDate 2006
url http://sedici.unlp.edu.ar/handle/10915/24249
work_keys_str_mv AT garzacastanonluise anapplicationofarxstochasticmodelstoirisrecognition
AT montesdeocasaul anapplicationofarxstochasticmodelstoirisrecognition
AT moralesmenendezruben anapplicationofarxstochasticmodelstoirisrecognition
AT garzacastanonluise applicationofarxstochasticmodelstoirisrecognition
AT montesdeocasaul applicationofarxstochasticmodelstoirisrecognition
AT moralesmenendezruben applicationofarxstochasticmodelstoirisrecognition
bdutipo_str Repositorios
_version_ 1764820466827001857