A statistical sampling strategy for iris recognition

We present a new approach for iris recognition based on a random sampling strategy. Iris recognition is a method to identify individuals, based on the analysis of the eye iris. This technique has received a great deal of attention lately, mainly due to iris unique characterics: highly randomized ap...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Garza Castañon, Luis E., Morales Menéndez, Rubén, Montes de Oca, Saúl
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2006
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/24248
Aporte de:
id I19-R120-10915-24248
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Identificación Biométrica
iris recognition systems
spellingShingle Ciencias Informáticas
Identificación Biométrica
iris recognition systems
Garza Castañon, Luis E.
Morales Menéndez, Rubén
Montes de Oca, Saúl
A statistical sampling strategy for iris recognition
topic_facet Ciencias Informáticas
Identificación Biométrica
iris recognition systems
description We present a new approach for iris recognition based on a random sampling strategy. Iris recognition is a method to identify individuals, based on the analysis of the eye iris. This technique has received a great deal of attention lately, mainly due to iris unique characterics: highly randomized appearance and impossibility to alter its features. A typical iris recognition system is composed of four phases: image acquisition and preprocessing, iris localization and extraction, iris features characterization, and comparison and matching. Our work uses standard integrodifferential operators to locate the iris. Then, we process iris image with histogram equalization to compensate for illumination variations.The characterization of iris features is performed by using accumulated histograms. These histograms are built from randomly selected subimages of iris. After that, a comparison is made between accumulated histograms of couples of iris samples, and a decision is taken based on their differences and on a threshold calculated experimentally. We ran experiments with a database of 210 iris, extracted from 70 individuals, and found a rate of succesful identifications in the order of 97 %.
format Objeto de conferencia
Objeto de conferencia
author Garza Castañon, Luis E.
Morales Menéndez, Rubén
Montes de Oca, Saúl
author_facet Garza Castañon, Luis E.
Morales Menéndez, Rubén
Montes de Oca, Saúl
author_sort Garza Castañon, Luis E.
title A statistical sampling strategy for iris recognition
title_short A statistical sampling strategy for iris recognition
title_full A statistical sampling strategy for iris recognition
title_fullStr A statistical sampling strategy for iris recognition
title_full_unstemmed A statistical sampling strategy for iris recognition
title_sort statistical sampling strategy for iris recognition
publishDate 2006
url http://sedici.unlp.edu.ar/handle/10915/24248
work_keys_str_mv AT garzacastanonluise astatisticalsamplingstrategyforirisrecognition
AT moralesmenendezruben astatisticalsamplingstrategyforirisrecognition
AT montesdeocasaul astatisticalsamplingstrategyforirisrecognition
AT garzacastanonluise statisticalsamplingstrategyforirisrecognition
AT moralesmenendezruben statisticalsamplingstrategyforirisrecognition
AT montesdeocasaul statisticalsamplingstrategyforirisrecognition
bdutipo_str Repositorios
_version_ 1764820466825953280