An automatic graph layout procedure to visualize correlated data
This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available. We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation. The methodology is presented...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2006
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23890 |
| Aporte de: |
| id |
I19-R120-10915-23890 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods |
| spellingShingle |
Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods Moscato, Pablo Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre An automatic graph layout procedure to visualize correlated data |
| topic_facet |
Ciencias Informáticas Quadratic Assignment Problem (QAP) hierarchical clustering Similarity measures Heuristic methods |
| description |
This paper introduces an automatic procedure to assist on the interpretation of a large dataset when a similarity metric is available.
We propose a visualization approach based on a graph layout method- ology that uses a Quadratic Assignment Problem (QAP) formulation.
The methodology is presented using as testbed a time series dataset of the Standard & Poor’s 100, one the leading stock market indicators in the United States. A weighted graph is created with the stocks repre- sented by the nodes and the edges’ weights are related to the correlation between the stocks’ time series. A heuristic for clustering is then pro- posed; it is based on the graph partition into disconnected subgraphs allowing the identification of clusters of highly-correlated stocks. The final layout corresponds well with the perceived market notion of the different industrial sectors. We compare the output of this procedure with a traditional dendogram approach of hierarchical clustering |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Moscato, Pablo Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre |
| author_facet |
Moscato, Pablo Inostroza-Ponta, Mario Berretta, Regina Mendes, Alexandre |
| author_sort |
Moscato, Pablo |
| title |
An automatic graph layout procedure to visualize correlated data |
| title_short |
An automatic graph layout procedure to visualize correlated data |
| title_full |
An automatic graph layout procedure to visualize correlated data |
| title_fullStr |
An automatic graph layout procedure to visualize correlated data |
| title_full_unstemmed |
An automatic graph layout procedure to visualize correlated data |
| title_sort |
automatic graph layout procedure to visualize correlated data |
| publishDate |
2006 |
| url |
http://sedici.unlp.edu.ar/handle/10915/23890 |
| work_keys_str_mv |
AT moscatopablo anautomaticgraphlayoutproceduretovisualizecorrelateddata AT inostrozapontamario anautomaticgraphlayoutproceduretovisualizecorrelateddata AT berrettaregina anautomaticgraphlayoutproceduretovisualizecorrelateddata AT mendesalexandre anautomaticgraphlayoutproceduretovisualizecorrelateddata AT moscatopablo automaticgraphlayoutproceduretovisualizecorrelateddata AT inostrozapontamario automaticgraphlayoutproceduretovisualizecorrelateddata AT berrettaregina automaticgraphlayoutproceduretovisualizecorrelateddata AT mendesalexandre automaticgraphlayoutproceduretovisualizecorrelateddata |
| bdutipo_str |
Repositorios |
| _version_ |
1764820466376114176 |