Time series modeling and synchronization using neural networks

In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponen...

Descripción completa

Detalles Bibliográficos
Autores principales: Cofiño, Antonio S., Gutiérrez, José Manuel
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2000
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23407
Aporte de:
id I19-R120-10915-23407
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
spellingShingle Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
Cofiño, Antonio S.
Gutiérrez, José Manuel
Time series modeling and synchronization using neural networks
topic_facet Ciencias Informáticas
nonlinear time series
system identification
Neural nets
Synchronization
identificación
description In the last few years, neural networks have found interesting applications in the field of time series modeling and forecasting. Some recent results show the ability of these models to approximate the dynamical behavior of nonlinear chaotic systems, leading to similar dimensions and Lyapunov exponents. In this paper we analyze further the dynamical properties of neural networks when comparted with chaotic systems. In particular, we show that the possibility of synchronizing chaotic systems gives a natural criterion for determining similar dynamical behavior between these systems and neural approximate models. In particular we show that a neural model obtained from an experimental scalar laser-intensity time series can be synchronized to the time series, indicating that it captures the dynamical behavior of the system underlying the data.
format Objeto de conferencia
Objeto de conferencia
author Cofiño, Antonio S.
Gutiérrez, José Manuel
author_facet Cofiño, Antonio S.
Gutiérrez, José Manuel
author_sort Cofiño, Antonio S.
title Time series modeling and synchronization using neural networks
title_short Time series modeling and synchronization using neural networks
title_full Time series modeling and synchronization using neural networks
title_fullStr Time series modeling and synchronization using neural networks
title_full_unstemmed Time series modeling and synchronization using neural networks
title_sort time series modeling and synchronization using neural networks
publishDate 2000
url http://sedici.unlp.edu.ar/handle/10915/23407
work_keys_str_mv AT cofinoantonios timeseriesmodelingandsynchronizationusingneuralnetworks
AT gutierrezjosemanuel timeseriesmodelingandsynchronizationusingneuralnetworks
bdutipo_str Repositorios
_version_ 1764820465888526337