Minimum description length quality measurues for modular functional network architectures
Modular neural networks (MNNs) are increasingly popular models for dealing with complex problems constituted by a number of dependent subtasks. An important problem on MNNs is finding the optimal aggregation of the neural modules, each of them dealing with one of the subproblems. In this paper, we p...
Autores principales: | , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Español |
Publicado: |
2001
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/23399 |
Aporte de: |
id |
I19-R120-10915-23399 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Español |
topic |
Ciencias Informáticas functional networks modular systems model selection methods time series prediction Neural nets Architectures ARTIFICIAL INTELLIGENCE |
spellingShingle |
Ciencias Informáticas functional networks modular systems model selection methods time series prediction Neural nets Architectures ARTIFICIAL INTELLIGENCE Cofiño, Antonio S. Gutiérrez, José Manuel Ivanissevich, María Laura Minimum description length quality measurues for modular functional network architectures |
topic_facet |
Ciencias Informáticas functional networks modular systems model selection methods time series prediction Neural nets Architectures ARTIFICIAL INTELLIGENCE |
description |
Modular neural networks (MNNs) are increasingly popular models for dealing with complex problems constituted by a number of dependent subtasks. An important problem on MNNs is finding the optimal aggregation of the neural modules, each of them dealing with one of the subproblems. In this paper, we present a functional network approach, based on the minimum description length quality measure, to the problem of finding optimal modular network architectures for specific problems. Examples of function approximation and nonlinear time series prediction are used to illustrate the performance of these models when compared with standard functional and neural networks. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Cofiño, Antonio S. Gutiérrez, José Manuel Ivanissevich, María Laura |
author_facet |
Cofiño, Antonio S. Gutiérrez, José Manuel Ivanissevich, María Laura |
author_sort |
Cofiño, Antonio S. |
title |
Minimum description length quality measurues for modular functional network architectures |
title_short |
Minimum description length quality measurues for modular functional network architectures |
title_full |
Minimum description length quality measurues for modular functional network architectures |
title_fullStr |
Minimum description length quality measurues for modular functional network architectures |
title_full_unstemmed |
Minimum description length quality measurues for modular functional network architectures |
title_sort |
minimum description length quality measurues for modular functional network architectures |
publishDate |
2001 |
url |
http://sedici.unlp.edu.ar/handle/10915/23399 |
work_keys_str_mv |
AT cofinoantonios minimumdescriptionlengthqualitymeasuruesformodularfunctionalnetworkarchitectures AT gutierrezjosemanuel minimumdescriptionlengthqualitymeasuruesformodularfunctionalnetworkarchitectures AT ivanissevichmarialaura minimumdescriptionlengthqualitymeasuruesformodularfunctionalnetworkarchitectures |
bdutipo_str |
Repositorios |
_version_ |
1764820465881186308 |