Continuous evolution of neural modules for autonomous robot controllers

In recent years, research on techniques for developing controllers for autonomous robots has been conducted. Evolutionary Algorithms are among the most popular tools used in this type of problem, mostly for its capacity to adapt to the environment. Nevertheless, they are usually applied to produce a...

Descripción completa

Detalles Bibliográficos
Autores principales: Vinuesa, Hernán Luis, Osella Massa, Germán Leandro, Corbalán, Leonardo César, Lanzarini, Laura Cristina
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2007
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/23177
Aporte de:
id I19-R120-10915-23177
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Informática
modular evolution
evolutionary algorithms
Neural nets
Algorithms
evolución de módulos neuronales
algoritmos evolutivos
spellingShingle Ciencias Informáticas
Informática
modular evolution
evolutionary algorithms
Neural nets
Algorithms
evolución de módulos neuronales
algoritmos evolutivos
Vinuesa, Hernán Luis
Osella Massa, Germán Leandro
Corbalán, Leonardo César
Lanzarini, Laura Cristina
Continuous evolution of neural modules for autonomous robot controllers
topic_facet Ciencias Informáticas
Informática
modular evolution
evolutionary algorithms
Neural nets
Algorithms
evolución de módulos neuronales
algoritmos evolutivos
description In recent years, research on techniques for developing controllers for autonomous robots has been conducted. Evolutionary Algorithms are among the most popular tools used in this type of problem, mostly for its capacity to adapt to the environment. Nevertheless, they are usually applied to produce a controller that will not continue its adjustment after concluding this process. This causes trouble to a controller when it is used in a dynamic environment. In this paper, the combination of a state-of-the-art modular neuro-evolution algorithm with a specific evolutionary algorithm is proposed. The former method is used to generate the controller while the later is used to adjust it during its operation. As a result, an adaptable controller based on a minimal topology neural network is obtained. The method proposed was tested in a goal-reach problem with satisfying results. Finally, conclusions are presented.
format Objeto de conferencia
Objeto de conferencia
author Vinuesa, Hernán Luis
Osella Massa, Germán Leandro
Corbalán, Leonardo César
Lanzarini, Laura Cristina
author_facet Vinuesa, Hernán Luis
Osella Massa, Germán Leandro
Corbalán, Leonardo César
Lanzarini, Laura Cristina
author_sort Vinuesa, Hernán Luis
title Continuous evolution of neural modules for autonomous robot controllers
title_short Continuous evolution of neural modules for autonomous robot controllers
title_full Continuous evolution of neural modules for autonomous robot controllers
title_fullStr Continuous evolution of neural modules for autonomous robot controllers
title_full_unstemmed Continuous evolution of neural modules for autonomous robot controllers
title_sort continuous evolution of neural modules for autonomous robot controllers
publishDate 2007
url http://sedici.unlp.edu.ar/handle/10915/23177
work_keys_str_mv AT vinuesahernanluis continuousevolutionofneuralmodulesforautonomousrobotcontrollers
AT osellamassagermanleandro continuousevolutionofneuralmodulesforautonomousrobotcontrollers
AT corbalanleonardocesar continuousevolutionofneuralmodulesforautonomousrobotcontrollers
AT lanzarinilauracristina continuousevolutionofneuralmodulesforautonomousrobotcontrollers
bdutipo_str Repositorios
_version_ 1764820465743822849