Boosting classifiers for weed seeds identification

The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we compl...

Descripción completa

Detalles Bibliográficos
Autores principales: Granitto, Pablo Miguel, Garralda, Pablo A., Verdes, Pablo Fabián, Ceccatto, Hermenegildo Alejandro
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2002
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/22998
Aporte de:
id I19-R120-10915-22998
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
machine vision
classification
boosting
neural networks
Neural nets
spellingShingle Ciencias Informáticas
machine vision
classification
boosting
neural networks
Neural nets
Granitto, Pablo Miguel
Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
Boosting classifiers for weed seeds identification
topic_facet Ciencias Informáticas
machine vision
classification
boosting
neural networks
Neural nets
description The identification and classification of seeds are of major technical and economical importance in the agricultural industry. To automate these activities, like in ocular inspection one should consider seed size, shape, color and texture, which can be obtained from seed images. In this work we complement and expand a previous study on the discriminating power of these characteristics for the unique identification of seeds of 57 weed species. In particular, we establish statistical bounds and confidence levels on the results reported in our preliminary study. Furthermore, we discuss the possibility of improving the naïve Bayes and artificial neural network classifiers previously developed in order to avoid the use of color features as classification parameters. Morphological and textural seed characteristics can be obtained from black and white images, which are easier to process and require a cheaper hardware than color ones. To this end we boost the classification methods by means of the AdaBoost.M1 technique, and compare the results obtained with the performance achieved when using color images. We conclude that the improvement in classification accuracy after boosting the naïve Bayes and neural classifiers does not fully compensate the discriminating power of color characteristics. However, it might be enough to make the classifier still acceptable in practical applications.
format Objeto de conferencia
Objeto de conferencia
author Granitto, Pablo Miguel
Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author_facet Granitto, Pablo Miguel
Garralda, Pablo A.
Verdes, Pablo Fabián
Ceccatto, Hermenegildo Alejandro
author_sort Granitto, Pablo Miguel
title Boosting classifiers for weed seeds identification
title_short Boosting classifiers for weed seeds identification
title_full Boosting classifiers for weed seeds identification
title_fullStr Boosting classifiers for weed seeds identification
title_full_unstemmed Boosting classifiers for weed seeds identification
title_sort boosting classifiers for weed seeds identification
publishDate 2002
url http://sedici.unlp.edu.ar/handle/10915/22998
work_keys_str_mv AT granittopablomiguel boostingclassifiersforweedseedsidentification
AT garraldapabloa boostingclassifiersforweedseedsidentification
AT verdespablofabian boostingclassifiersforweedseedsidentification
AT ceccattohermenegildoalejandro boostingclassifiersforweedseedsidentification
bdutipo_str Repositorios
_version_ 1764820467973095424