Kolmogorov complexity for possibly infinite computations
In this paper we study a variant of the Kolmogorov complexity for non-effective computations, that is, either halting or non-halting computations on Turing machines. This complexity function is defined as the length of the shortest inputs that produce a desired output via a possibly non-halting comp...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2003
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22767 |
| Aporte de: |
| id |
I19-R120-10915-22767 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Computational logic Connection machines Kolmogorov complexity Program-size complexity Turing machines monotone machines infinite computations non-effective computations |
| spellingShingle |
Ciencias Informáticas Computational logic Connection machines Kolmogorov complexity Program-size complexity Turing machines monotone machines infinite computations non-effective computations Figueira, Santiago Becher, Verónica Kolmogorov complexity for possibly infinite computations |
| topic_facet |
Ciencias Informáticas Computational logic Connection machines Kolmogorov complexity Program-size complexity Turing machines monotone machines infinite computations non-effective computations |
| description |
In this paper we study a variant of the Kolmogorov complexity for non-effective computations, that is, either halting or non-halting computations on Turing machines. This complexity function is defined as the length of the shortest inputs that produce a desired output via a possibly non-halting computation. Clearly this function gives a lower bound of the classical Kolmogorov complexity. In particular, if the machine is allowed to overwrite its output, this complexity coincides with the classical Kolmogorov complexity for halting computations relative to the first jump of the halting problem. However, on machines that cannot erase their output –called monotone machines–, we prove that our complexity for non effective computations and the classical Kolmogorov complexity separate as much as we want. We also consider the prefix-free complexity for possibly infinite computations. We study several properties of the graph of these complexity functions and specially their oscillations with respect to the complexities for effective computations. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Figueira, Santiago Becher, Verónica |
| author_facet |
Figueira, Santiago Becher, Verónica |
| author_sort |
Figueira, Santiago |
| title |
Kolmogorov complexity for possibly infinite computations |
| title_short |
Kolmogorov complexity for possibly infinite computations |
| title_full |
Kolmogorov complexity for possibly infinite computations |
| title_fullStr |
Kolmogorov complexity for possibly infinite computations |
| title_full_unstemmed |
Kolmogorov complexity for possibly infinite computations |
| title_sort |
kolmogorov complexity for possibly infinite computations |
| publishDate |
2003 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22767 |
| work_keys_str_mv |
AT figueirasantiago kolmogorovcomplexityforpossiblyinfinitecomputations AT becherveronica kolmogorovcomplexityforpossiblyinfinitecomputations |
| bdutipo_str |
Repositorios |
| _version_ |
1764820467675299841 |