Neuro-Controllers, scalability and adaptation
A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controll...
Autores principales: | , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2006
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22665 |
Aporte de: |
Sumario: | A Layered Evolution (LE) paradigm based method for the generation of a neuron-controller is developed and verified through simulations and experimentally. It is intended to solve scalability issues in systems with many behavioral modules. Each and every module is a genetically evolved neuro-controller specialized in performing a different task. The main goal is to reach a combination of different basic behavioral elements using different artificial neural-network paradigms concerning mobile robot navigation in an unknown environment. The obtained controller is evaluated over different scenarios in a structured environment, ranging from a detailed simulation model to a real experiment. Finally most important implies are shown through several focuses. |
---|