Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain
Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor...
Autores principales: | , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2004
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22497 |
Aporte de: |
id |
I19-R120-10915-22497 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed |
spellingShingle |
Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed Jesús Medel Juárez, José de Guevara López, Pedro Flores Rueda, Alberto Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
topic_facet |
Ciencias Informáticas Filtering estimation signal processing. Simulation Parallel processing Distributed |
description |
Consider us the problem of time-varying parameter estimation. The most immediate and simple idea is to include a discounting procedure in an estimation algorithm i.e., a procedure for discarding (forgetting) old information. The most common way to do is to introduce an exponential forgetting factor (FF) into the corresponding estimation procedure (to see: Ljung and Gunnarson (1990)).
In this paper, the authors going to describe a good enough estimator considering a system with nonstationary time variant properties with respect to input and output qualities. The techniques used are Instrumental Variable (IV) and Matrix Forgetting Factor (MFF). The results previously obtained by (Poznyak and Medel 1999a, 1999b) were the basis of this paper. The theoretical description illustrates the advantages with respect to others filters below cited. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Jesús Medel Juárez, José de Guevara López, Pedro Flores Rueda, Alberto |
author_facet |
Jesús Medel Juárez, José de Guevara López, Pedro Flores Rueda, Alberto |
author_sort |
Jesús Medel Juárez, José de |
title |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_short |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_full |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_fullStr |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_full_unstemmed |
Matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
title_sort |
matrix estimation using matrix forgetting factor and instrumental variable for nonstationary sequences with time variant matrix gain |
publishDate |
2004 |
url |
http://sedici.unlp.edu.ar/handle/10915/22497 |
work_keys_str_mv |
AT jesusmedeljuarezjosede matrixestimationusingmatrixforgettingfactorandinstrumentalvariablefornonstationarysequenceswithtimevariantmatrixgain AT guevaralopezpedro matrixestimationusingmatrixforgettingfactorandinstrumentalvariablefornonstationarysequenceswithtimevariantmatrixgain AT floresruedaalberto matrixestimationusingmatrixforgettingfactorandinstrumentalvariablefornonstationarysequenceswithtimevariantmatrixgain |
bdutipo_str |
Repositorios |
_version_ |
1764820465874894848 |