Inserting problem-specific knowledge in multirecombined evolutionary algorithms
In the restricted single-machine common due date problem the goal is to find a schedule for the n jobs which jointly minimizes the sum of earliness and tardiness penalties, while for the weighted tardiness problem the goal is to find a schedule that minimizes the tardiness penalties. Both problems,...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2002
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22065 |
| Aporte de: |
| id |
I19-R120-10915-22065 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Inserting problem-specific knowledge multirecombined evolutionary algorithms ARTIFICIAL INTELLIGENCE Knowledge acquisition Algorithms |
| spellingShingle |
Ciencias Informáticas Inserting problem-specific knowledge multirecombined evolutionary algorithms ARTIFICIAL INTELLIGENCE Knowledge acquisition Algorithms Pandolfi, Daniel San Pedro, María Eugenia de Villagra, Andrea Vilanova, Gabriela Gallard, Raúl Hector Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| topic_facet |
Ciencias Informáticas Inserting problem-specific knowledge multirecombined evolutionary algorithms ARTIFICIAL INTELLIGENCE Knowledge acquisition Algorithms |
| description |
In the restricted single-machine common due date problem the goal is to find a schedule for the n jobs which jointly minimizes the sum of earliness and tardiness penalties, while for the weighted tardiness problem the goal is to find a schedule that minimizes the tardiness penalties. Both problems, even in theirs simplest formulations, are an NP-Hard optimization problem. This presentation discusses how problem specific knowledge is inserted into the evolutionary algorithm to enhance its performance. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Pandolfi, Daniel San Pedro, María Eugenia de Villagra, Andrea Vilanova, Gabriela Gallard, Raúl Hector |
| author_facet |
Pandolfi, Daniel San Pedro, María Eugenia de Villagra, Andrea Vilanova, Gabriela Gallard, Raúl Hector |
| author_sort |
Pandolfi, Daniel |
| title |
Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| title_short |
Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| title_full |
Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| title_fullStr |
Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| title_full_unstemmed |
Inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| title_sort |
inserting problem-specific knowledge in multirecombined evolutionary algorithms |
| publishDate |
2002 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22065 |
| work_keys_str_mv |
AT pandolfidaniel insertingproblemspecificknowledgeinmultirecombinedevolutionaryalgorithms AT sanpedromariaeugeniade insertingproblemspecificknowledgeinmultirecombinedevolutionaryalgorithms AT villagraandrea insertingproblemspecificknowledgeinmultirecombinedevolutionaryalgorithms AT vilanovagabriela insertingproblemspecificknowledgeinmultirecombinedevolutionaryalgorithms AT gallardraulhector insertingproblemspecificknowledgeinmultirecombinedevolutionaryalgorithms |
| bdutipo_str |
Repositorios |
| _version_ |
1764820465461755907 |