Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees
In this paper a fully automatic scheme for embedding visually recognizable watermark patterns to video objects is proposed. The architecture consists of 3 main modules. During the first module unsupervised video object extraction is performed, by analyzing stereoscopic pairs of frames. In the second...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2012
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/22064 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct12-5.pdf |
| Aporte de: |
| id |
I19-R120-10915-22064 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Procesamiento de Imagen Asistida por Computador video object (VO) visually recognizable watermark pattern |
| spellingShingle |
Ciencias Informáticas Procesamiento de Imagen Asistida por Computador video object (VO) visually recognizable watermark pattern Ntalianis, Klimis S. Tzouveli, Paraskevi D. Drigas, Athanasios S. Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| topic_facet |
Ciencias Informáticas Procesamiento de Imagen Asistida por Computador video object (VO) visually recognizable watermark pattern |
| description |
In this paper a fully automatic scheme for embedding visually recognizable watermark patterns to video objects is proposed. The architecture consists of 3 main modules. During the first module unsupervised video object extraction is performed, by analyzing stereoscopic pairs of frames. In the second module each video object is decomposed into three levels with ten subbands, using the Shape Adaptive Discrete Wavelet Transform (SA-DWT) and three pairs of subbands are formed (HL<sub>3</sub> , HL<sub>2</sub>), (LH<sub>3</sub>, LH<sub>2</sub>) and (HH<sub>3</sub>, HH<sub>2</sub>). Next Qualified Significant Wavelet Trees (QSWTs) are estimated for the specific pair of subbands with the highest energy content. QSWTs are derived from the Embedded Zerotree Wavelet (EZW) algorithm and they are high-energy paths of wavelet coefficients. Finally during the third module, visually recognizable watermark patterns are redundantly embedded to the coefficients of the highest energy QSWTs and the inverse SA-DWT is applied to provide the watermarked video object. Performance of the proposed video object watermarking system is tested under various signal distortions such as JPEG lossy compression, sharpening, blurring and adding different types of noise. Furthermore the case of transmission losses for the watermarked video objects is also investigated. Experimental results on real life video objects indicate the efficiency and robustness of the proposed scheme |
| format |
Articulo Articulo |
| author |
Ntalianis, Klimis S. Tzouveli, Paraskevi D. Drigas, Athanasios S. |
| author_facet |
Ntalianis, Klimis S. Tzouveli, Paraskevi D. Drigas, Athanasios S. |
| author_sort |
Ntalianis, Klimis S. |
| title |
Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| title_short |
Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| title_full |
Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| title_fullStr |
Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| title_full_unstemmed |
Automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| title_sort |
automatic stereoscopic video object-based watermarking using qualified significant wavelet trees |
| publishDate |
2012 |
| url |
http://sedici.unlp.edu.ar/handle/10915/22064 http://journal.info.unlp.edu.ar/wp-content/uploads/JCST-Oct12-5.pdf |
| work_keys_str_mv |
AT ntalianisklimiss automaticstereoscopicvideoobjectbasedwatermarkingusingqualifiedsignificantwavelettrees AT tzouveliparaskevid automaticstereoscopicvideoobjectbasedwatermarkingusingqualifiedsignificantwavelettrees AT drigasathanasioss automaticstereoscopicvideoobjectbasedwatermarkingusingqualifiedsignificantwavelettrees |
| bdutipo_str |
Repositorios |
| _version_ |
1764820465461755905 |