Diffuse outlier time series detection technique for functional magnetic resonance imaging

We propose a new support vector machine (SVM) based method that improves the time series classi cation in magnetic resonance imaging (fMRI). We exploit the robust anisotropic di usion (RAD) technique to increase the classi cation performance of the one class support vector machine by taking into acc...

Descripción completa

Detalles Bibliográficos
Autores principales: Giacomantone, Javier, Tarutina, Tatiana, De Giusti, Armando Eduardo
Formato: Objeto de conferencia
Lenguaje:Español
Publicado: 2010
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/19379
Aporte de:
id I19-R120-10915-19379
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Español
topic Ciencias Informáticas
Time Series
Functional Magnetic Resonance Imaging
classification
Support Vector Machines
Robust Anisotropic Diffusión
Time series analysis
spellingShingle Ciencias Informáticas
Time Series
Functional Magnetic Resonance Imaging
classification
Support Vector Machines
Robust Anisotropic Diffusión
Time series analysis
Giacomantone, Javier
Tarutina, Tatiana
De Giusti, Armando Eduardo
Diffuse outlier time series detection technique for functional magnetic resonance imaging
topic_facet Ciencias Informáticas
Time Series
Functional Magnetic Resonance Imaging
classification
Support Vector Machines
Robust Anisotropic Diffusión
Time series analysis
description We propose a new support vector machine (SVM) based method that improves the time series classi cation in magnetic resonance imaging (fMRI). We exploit the robust anisotropic di usion (RAD) technique to increase the classi cation performance of the one class support vector machine by taking into account the hypothesis of spatial relationship between active voxels. The proposed method was called Di use One Class Support Vector Machine (DOCSVM). DOCSVM method treats activated voxels as outliers and applies one class support vector machine to generate an activation map and RAD to include the neighborhood hypothesis, improving the classi cation and reducing the iteration steps with respect to RADSPM. We give a brief review of the main methods, present receiver operating characteristic (ROC) results and conclude suggesting further research alternatives.
format Objeto de conferencia
Objeto de conferencia
author Giacomantone, Javier
Tarutina, Tatiana
De Giusti, Armando Eduardo
author_facet Giacomantone, Javier
Tarutina, Tatiana
De Giusti, Armando Eduardo
author_sort Giacomantone, Javier
title Diffuse outlier time series detection technique for functional magnetic resonance imaging
title_short Diffuse outlier time series detection technique for functional magnetic resonance imaging
title_full Diffuse outlier time series detection technique for functional magnetic resonance imaging
title_fullStr Diffuse outlier time series detection technique for functional magnetic resonance imaging
title_full_unstemmed Diffuse outlier time series detection technique for functional magnetic resonance imaging
title_sort diffuse outlier time series detection technique for functional magnetic resonance imaging
publishDate 2010
url http://sedici.unlp.edu.ar/handle/10915/19379
work_keys_str_mv AT giacomantonejavier diffuseoutliertimeseriesdetectiontechniqueforfunctionalmagneticresonanceimaging
AT tarutinatatiana diffuseoutliertimeseriesdetectiontechniqueforfunctionalmagneticresonanceimaging
AT degiustiarmandoeduardo diffuseoutliertimeseriesdetectiontechniqueforfunctionalmagneticresonanceimaging
bdutipo_str Repositorios
_version_ 1764820464332439554