Fast GPU audio identification

Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fing...

Descripción completa

Detalles Bibliográficos
Autores principales: Miranda, Natalia Carolina, Piccoli, María Fabiana, Chávez, Edgar, Camarena Ibarrola, Antonio
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2010
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/18925
Aporte de:
id I19-R120-10915-18925
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
spellingShingle Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
Miranda, Natalia Carolina
Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
Fast GPU audio identification
topic_facet Ciencias Informáticas
audio identification; Graphics Processing Unit (GPU)
description Audio identification consist in the ability to pair audio signals of the same perceptual nature. In other words, the aim is to be able to compare an audio signal with a modified versions perceptually equivalent. To accomplish that, an audio fingerprint is extracted from the signals and only the fingerprints are compared to asses the similarity. Some guarantee have to be given about the equivalence between comparing audio fingerprints and perceptually comparing the signals. In designing AFPs, a dense representation is more robust than a sparse one. A dense representation also imply more compute cycles and hence a slower processing speed. To speedup the computing of a very dense audio fingerprint, able to stand stable under noise, re-recording, low-pass filtering, etc., we propose the use of a massive parallel architecture based on the Graphics Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even with a relatively small GPU and using a single core in the GPU, we are able to obtain a notable speedup per core in a GPU/CPU model. We compared our FFT implementation against state of the art CUFFT obtaining impressive results, hence our FFT implementation can help other areas of application.
format Objeto de conferencia
Objeto de conferencia
author Miranda, Natalia Carolina
Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
author_facet Miranda, Natalia Carolina
Piccoli, María Fabiana
Chávez, Edgar
Camarena Ibarrola, Antonio
author_sort Miranda, Natalia Carolina
title Fast GPU audio identification
title_short Fast GPU audio identification
title_full Fast GPU audio identification
title_fullStr Fast GPU audio identification
title_full_unstemmed Fast GPU audio identification
title_sort fast gpu audio identification
publishDate 2010
url http://sedici.unlp.edu.ar/handle/10915/18925
work_keys_str_mv AT mirandanataliacarolina fastgpuaudioidentification
AT piccolimariafabiana fastgpuaudioidentification
AT chavezedgar fastgpuaudioidentification
AT camarenaibarrolaantonio fastgpuaudioidentification
bdutipo_str Repositorios
_version_ 1764820463438004226