Workplace stress assessment using emotional recognition and heart rate techniques

This study aims to develop a mechanism to evaluate employee health through emotion recognition (ER) analysis and heart rate measurement, with the goal of establishing correlations with stress levels. It is the second phase of a previous study, where current results will be compared to those previou...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vega, Alejandro, Bilbao, Martín, Falappa, Marcelo Alejandro
Formato: Articulo
Lenguaje:Español
Publicado: 2025
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/178019
Aporte de:
id I19-R120-10915-178019
record_format dspace
spelling I19-R120-10915-1780192025-05-06T17:17:49Z http://sedici.unlp.edu.ar/handle/10915/178019 Workplace stress assessment using emotional recognition and heart rate techniques Evaluación de estrés laboral mediante técnicas de reconocimiento emocional y ritmo cardíaco Vega, Alejandro Bilbao, Martín Falappa, Marcelo Alejandro 2025-04 2025-04-08T14:09:13Z es Ciencias Informáticas Inteligencia artificial Deep Face Reconocimiento de emociones Salud Artificial intelligence Emotion recognition Health This study aims to develop a mechanism to evaluate employee health through emotion recognition (ER) analysis and heart rate measurement, with the goal of establishing correlations with stress levels. It is the second phase of a previous study, where current results will be compared to those previously obtained. In both studies, biometric devices such as cameras were used to capture facial images analyzed with artificial intelligence, and sensors in mobile phones or smartwatches to record heart rate. Given the challenge of emotion detection, we propase using the DeepFace algorithm for facial emotion recognition, which has demonstrated a 94% accuracy. Additionally, employees will complete a self-administered questionnaire about their emotional and mental state (neutral, tired, energized), allowing for a comparison between detected emotions and subjective reports. This will provide a better understanding of the accuracy of emotion recognition and contribute to improving health status evaluation. Este estudio tiene como objetivo desarrollar un mecanismo para evaluar la salud de los empleados mediante el análisis de reconocimiento de emociones (RE) y la medición del ritmo cardíaco, con el fin de establecer correlaciones con los niveles de estrés. Se trata de la segunda fase de un estudio previo, en la que se compararán los resultados actuales con los obtenidos anteriormente. En ambos estudios se utilizaron dispositivos biométricos, como cámaras para capturar imágenes faciales analizadas con inteligencia artificial y sensores en teléfonos móviles o relojes inteligentes para registrar el ritmo cardíaco. Dado el desafío que representa la detección de emociones, proponemos utilizar el algoritmo Deep- Face para el reconocimiento facial de emociones, el cual ha demostrado una precisión del 94%. Además, los empleados completarán un cuestionario autoadministrado sobre su estado emocional y anímico ( neutral, cansado, con energía), lo que permitirá comparar las emociones detectadas con los informes subjetivos. Esto proporcionará una mayor comprensión sobre la precisión del reconocimiento emocional y contribuirá a mejorar la evaluación del estado de salud. Sociedad Argentina de Informática e Investigación Operativa Articulo Articulo http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Español
topic Ciencias Informáticas
Inteligencia artificial
Deep Face
Reconocimiento de emociones
Salud
Artificial intelligence
Emotion recognition
Health
spellingShingle Ciencias Informáticas
Inteligencia artificial
Deep Face
Reconocimiento de emociones
Salud
Artificial intelligence
Emotion recognition
Health
Vega, Alejandro
Bilbao, Martín
Falappa, Marcelo Alejandro
Workplace stress assessment using emotional recognition and heart rate techniques
topic_facet Ciencias Informáticas
Inteligencia artificial
Deep Face
Reconocimiento de emociones
Salud
Artificial intelligence
Emotion recognition
Health
description This study aims to develop a mechanism to evaluate employee health through emotion recognition (ER) analysis and heart rate measurement, with the goal of establishing correlations with stress levels. It is the second phase of a previous study, where current results will be compared to those previously obtained. In both studies, biometric devices such as cameras were used to capture facial images analyzed with artificial intelligence, and sensors in mobile phones or smartwatches to record heart rate. Given the challenge of emotion detection, we propase using the DeepFace algorithm for facial emotion recognition, which has demonstrated a 94% accuracy. Additionally, employees will complete a self-administered questionnaire about their emotional and mental state (neutral, tired, energized), allowing for a comparison between detected emotions and subjective reports. This will provide a better understanding of the accuracy of emotion recognition and contribute to improving health status evaluation.
format Articulo
Articulo
author Vega, Alejandro
Bilbao, Martín
Falappa, Marcelo Alejandro
author_facet Vega, Alejandro
Bilbao, Martín
Falappa, Marcelo Alejandro
author_sort Vega, Alejandro
title Workplace stress assessment using emotional recognition and heart rate techniques
title_short Workplace stress assessment using emotional recognition and heart rate techniques
title_full Workplace stress assessment using emotional recognition and heart rate techniques
title_fullStr Workplace stress assessment using emotional recognition and heart rate techniques
title_full_unstemmed Workplace stress assessment using emotional recognition and heart rate techniques
title_sort workplace stress assessment using emotional recognition and heart rate techniques
publishDate 2025
url http://sedici.unlp.edu.ar/handle/10915/178019
work_keys_str_mv AT vegaalejandro workplacestressassessmentusingemotionalrecognitionandheartratetechniques
AT bilbaomartin workplacestressassessmentusingemotionalrecognitionandheartratetechniques
AT falappamarceloalejandro workplacestressassessmentusingemotionalrecognitionandheartratetechniques
AT vegaalejandro evaluaciondeestreslaboralmediantetecnicasdereconocimientoemocionalyritmocardiaco
AT bilbaomartin evaluaciondeestreslaboralmediantetecnicasdereconocimientoemocionalyritmocardiaco
AT falappamarceloalejandro evaluaciondeestreslaboralmediantetecnicasdereconocimientoemocionalyritmocardiaco
_version_ 1852545728823427072