Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation

Molecular similarity evaluation is a key aspect of bioinfor- matics and poses a significant challenge when dealing with compounds with unknown structures. In this context, graph neural networks have proven effective in generating representations based on the topology of chemical reactions. However,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hermann, Tobías J., Vignolo, Leandro D., Gerard, Matias F.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2025
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/177971
Aporte de:
id I19-R120-10915-177971
record_format dspace
spelling I19-R120-10915-1779712025-05-06T17:17:49Z http://sedici.unlp.edu.ar/handle/10915/177971 Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation Estrategia evolutiva para la optimización de modelos neuronales de estimación de similaridad entre compuestos Hermann, Tobías J. Vignolo, Leandro D. Gerard, Matias F. 2025-04 2025-04-04T15:22:05Z en Ciencias Informáticas graph neural networks evolutionary computation compound similarity metabolic pathways redes neuronales en grafo computación evolutiva similaridad entre compuesto vías metabólicas Molecular similarity evaluation is a key aspect of bioinfor- matics and poses a significant challenge when dealing with compounds with unknown structures. In this context, graph neural networks have proven effective in generating representations based on the topology of chemical reactions. However, designing these models and selecting their hyperparameters requires exploring a vast range of options. Evolutio- nary algorithms naturally arise as a solution for searching these exten- sive spaces, including the hyperparameter space of neural architectures. This study presents a comparison between a traditional hyperparameter search approach, based on expert knowledge, and a method leveraging evolutionary computation for the same task, specifically in compound similarity estimation. Using a predefined architecture, experiments are conducted to compare both approaches across different datasets. The re- sults indicate that the evolutionary computation-based method success- fully identifies suitable hyperparameters for the evaluated architecture, achieving a performance comparable to the expert-driven approach while eliminating the need for human intervention in the selection process. La evaluación de similaridad molecular es clave en el ámbito de la bioinformática, y representa un reto significativo cuando se trata de compuestos cuya estructura no se conoce. En este contexto, los modelos neuronales en grafos han demostrado ser efectivos para obtener representaciones a partir de la topología de reacciones químicas. No obstante, el diseño de estos modelos, así como la selección de sus hiperparámetros, requiere la evaluación de un extenso rango de opciones. Los algoritmos evolutivos se presentan como una solución natural para explorar estos amplios espacios de búsqueda, incluyendo el espacio de hiperparámetros de las arquitecturas neuronales. Este estudio propone una comparación entre un enfoque tradicional de búsqueda de hiperparámetros, basado en la experiencia del experto, y un método que utiliza computación evolutiva para la misma tarea, específicamente en la estimación de similaridad entre compuestos. Utilizando una arquitectura predefinida, se llevan a cabo experimentos para comparar ambos enfoques en distintos conjuntos de datos. Los resultados indican que el método basado en computación evolutiva logra identificar hiperparámetros adecuados para la arquitectura evaluada, alcanzando un desempeño comparable al del enfoque experto, pero sin requerir la intervención del conocimiento humano para dicha selección. Sociedad Argentina de Informática e Investigación Operativa Articulo Articulo http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
graph neural networks
evolutionary computation
compound similarity
metabolic pathways
redes neuronales en grafo
computación evolutiva
similaridad entre compuesto
vías metabólicas
spellingShingle Ciencias Informáticas
graph neural networks
evolutionary computation
compound similarity
metabolic pathways
redes neuronales en grafo
computación evolutiva
similaridad entre compuesto
vías metabólicas
Hermann, Tobías J.
Vignolo, Leandro D.
Gerard, Matias F.
Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
topic_facet Ciencias Informáticas
graph neural networks
evolutionary computation
compound similarity
metabolic pathways
redes neuronales en grafo
computación evolutiva
similaridad entre compuesto
vías metabólicas
description Molecular similarity evaluation is a key aspect of bioinfor- matics and poses a significant challenge when dealing with compounds with unknown structures. In this context, graph neural networks have proven effective in generating representations based on the topology of chemical reactions. However, designing these models and selecting their hyperparameters requires exploring a vast range of options. Evolutio- nary algorithms naturally arise as a solution for searching these exten- sive spaces, including the hyperparameter space of neural architectures. This study presents a comparison between a traditional hyperparameter search approach, based on expert knowledge, and a method leveraging evolutionary computation for the same task, specifically in compound similarity estimation. Using a predefined architecture, experiments are conducted to compare both approaches across different datasets. The re- sults indicate that the evolutionary computation-based method success- fully identifies suitable hyperparameters for the evaluated architecture, achieving a performance comparable to the expert-driven approach while eliminating the need for human intervention in the selection process.
format Articulo
Articulo
author Hermann, Tobías J.
Vignolo, Leandro D.
Gerard, Matias F.
author_facet Hermann, Tobías J.
Vignolo, Leandro D.
Gerard, Matias F.
author_sort Hermann, Tobías J.
title Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
title_short Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
title_full Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
title_fullStr Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
title_full_unstemmed Evolutionary Strategy for Optimizing Neural Models for Compound Similarity Estimation
title_sort evolutionary strategy for optimizing neural models for compound similarity estimation
publishDate 2025
url http://sedici.unlp.edu.ar/handle/10915/177971
work_keys_str_mv AT hermanntobiasj evolutionarystrategyforoptimizingneuralmodelsforcompoundsimilarityestimation
AT vignololeandrod evolutionarystrategyforoptimizingneuralmodelsforcompoundsimilarityestimation
AT gerardmatiasf evolutionarystrategyforoptimizingneuralmodelsforcompoundsimilarityestimation
AT hermanntobiasj estrategiaevolutivaparalaoptimizaciondemodelosneuronalesdeestimaciondesimilaridadentrecompuestos
AT vignololeandrod estrategiaevolutivaparalaoptimizaciondemodelosneuronalesdeestimaciondesimilaridadentrecompuestos
AT gerardmatiasf estrategiaevolutivaparalaoptimizaciondemodelosneuronalesdeestimaciondesimilaridadentrecompuestos
_version_ 1852545711488368640