Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software
The constant growth of the software industry has driven companies to explore new ways to improve their processes, generating novel techniques to optimize the tasks involved in software development, in order to increase the efficiency of these processes. At the same time, the terms “Artificial Intell...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/177035 |
| Aporte de: |
| id |
I19-R120-10915-177035 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1770352025-02-28T20:06:36Z http://sedici.unlp.edu.ar/handle/10915/177035 Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software Enciso Rolon, Alex Paul González Prieto, Osvaldo Barán, Benjamín 2024-08 2024 2025-02-28T12:21:14Z es Ciencias Informáticas Machine Learning Software Engineering Taxonomy The constant growth of the software industry has driven companies to explore new ways to improve their processes, generating novel techniques to optimize the tasks involved in software development, in order to increase the efficiency of these processes. At the same time, the terms “Artificial Intelligence” and “Machine Learning” (ML), are being increasingly used, but there still is a certain lack of knowledge about these concepts. Given this context, our main objective is to establish a connection between these disciplines, in order to better understand the benefit of using ML in Software Engineer. In this work, a systematic analysis of the scientific literature published between 2018 and 2023 has been carried out in order to create a taxonomy of Machine Learning algorithms applied to the stages required for software development. The most prominent results indicate that the testing phase in the software development cycle is one of the most researched areas in relation to the aforementioned challenges. Furthermore, it has been observed that some ML algorithms such as Random Forest demonstrate acceptable performance in optimizing one or more tasks simultaneously in the software development process. Sociedad Argentina de Informática e Investigación Operativa Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 86-99 |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Español |
| topic |
Ciencias Informáticas Machine Learning Software Engineering Taxonomy |
| spellingShingle |
Ciencias Informáticas Machine Learning Software Engineering Taxonomy Enciso Rolon, Alex Paul González Prieto, Osvaldo Barán, Benjamín Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| topic_facet |
Ciencias Informáticas Machine Learning Software Engineering Taxonomy |
| description |
The constant growth of the software industry has driven companies to explore new ways to improve their processes, generating novel techniques to optimize the tasks involved in software development, in order to increase the efficiency of these processes. At the same time, the terms “Artificial Intelligence” and “Machine Learning” (ML), are being increasingly used, but there still is a certain lack of knowledge about these concepts. Given this context, our main objective is to establish a connection between these disciplines, in order to better understand the benefit of using ML in Software Engineer. In this work, a systematic analysis of the scientific literature published between 2018 and 2023 has been carried out in order to create a taxonomy of Machine Learning algorithms applied to the stages required for software development. The most prominent results indicate that the testing phase in the software development cycle is one of the most researched areas in relation to the aforementioned challenges. Furthermore, it has been observed that some ML algorithms such as Random Forest demonstrate acceptable performance in optimizing one or more tasks simultaneously in the software development process. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Enciso Rolon, Alex Paul González Prieto, Osvaldo Barán, Benjamín |
| author_facet |
Enciso Rolon, Alex Paul González Prieto, Osvaldo Barán, Benjamín |
| author_sort |
Enciso Rolon, Alex Paul |
| title |
Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| title_short |
Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| title_full |
Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| title_fullStr |
Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| title_full_unstemmed |
Taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| title_sort |
taxonomía de algoritmos basados en machine learning aplicados en la ingeniería de software |
| publishDate |
2024 |
| url |
http://sedici.unlp.edu.ar/handle/10915/177035 |
| work_keys_str_mv |
AT encisorolonalexpaul taxonomiadealgoritmosbasadosenmachinelearningaplicadosenlaingenieriadesoftware AT gonzalezprietoosvaldo taxonomiadealgoritmosbasadosenmachinelearningaplicadosenlaingenieriadesoftware AT baranbenjamin taxonomiadealgoritmosbasadosenmachinelearningaplicadosenlaingenieriadesoftware |
| _version_ |
1847925317464752128 |