Scaling up ConvAtt for Sign Language Recognition
Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data au...
Guardado en:
| Autores principales: | , , , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/176284 |
| Aporte de: |
| id |
I19-R120-10915-176284 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1762842025-02-07T20:04:57Z http://sedici.unlp.edu.ar/handle/10915/176284 Scaling up ConvAtt for Sign Language Recognition Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo 2024-10 2024 2025-02-07T17:09:47Z en Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. Red de Universidades con Carreras en Informática Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 145-154 |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction |
| spellingShingle |
Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo Scaling up ConvAtt for Sign Language Recognition |
| topic_facet |
Ciencias Informáticas Handshape Recognition Unbalanced Data Limited Data Sign Language Human Motion Prediction |
| description |
Sign language is crucial for communication within the deaf community, making Sign Language Recognition (SLR) essential for bridging the gap between signers and non-signers. However, SLR models often face challenges due to limited data availability and quality. This paper investigates various data augmentation and regularization techniques to enhance the performance of a lightweight SLR model. We focus on recognizing signs from the French Belgian Sign Language using a novel model architecture that integrates convolutional, channel attention, and selfattention layers. Our experiments demonstrate the effectiveness of these techniques, achieving a top-1 accuracy of 49.99% and a top-10 accuracy of 83.19% across 600 distinct signs. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo |
| author_facet |
Ríos, Gastón Gustavo Dal Bianco, Pedro Alejandro Ronchetti, Franco Quiroga, Facundo Manuel Ponte Ahón, Santiago Andrés Stanchi, Oscar Agustín Hasperué, Waldo |
| author_sort |
Ríos, Gastón Gustavo |
| title |
Scaling up ConvAtt for Sign Language Recognition |
| title_short |
Scaling up ConvAtt for Sign Language Recognition |
| title_full |
Scaling up ConvAtt for Sign Language Recognition |
| title_fullStr |
Scaling up ConvAtt for Sign Language Recognition |
| title_full_unstemmed |
Scaling up ConvAtt for Sign Language Recognition |
| title_sort |
scaling up convatt for sign language recognition |
| publishDate |
2024 |
| url |
http://sedici.unlp.edu.ar/handle/10915/176284 |
| work_keys_str_mv |
AT riosgastongustavo scalingupconvattforsignlanguagerecognition AT dalbiancopedroalejandro scalingupconvattforsignlanguagerecognition AT ronchettifranco scalingupconvattforsignlanguagerecognition AT quirogafacundomanuel scalingupconvattforsignlanguagerecognition AT ponteahonsantiagoandres scalingupconvattforsignlanguagerecognition AT stanchioscaragustin scalingupconvattforsignlanguagerecognition AT hasperuewaldo scalingupconvattforsignlanguagerecognition |
| _version_ |
1845116778242375680 |