A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74
We present in this paper optimal and accelerated row projection algorithms arising from new results that allow us to define the iterate xfc+1 as the projection of xk onto a hyperplane which minimizes its distance to the solution x*. These algorithms also use a novel partition strategy into blocks ba...
Autores principales: | , , , |
---|---|
Formato: | Publicacion seriada |
Lenguaje: | Inglés |
Publicado: |
2000
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/172779 |
Aporte de: |
id |
I19-R120-10915-172779 |
---|---|
record_format |
dspace |
spelling |
I19-R120-10915-1727792024-11-08T04:10:41Z http://sedici.unlp.edu.ar/handle/10915/172779 A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa Vacchino, María Cristina 2000 2024-11-07T16:26:26Z en Matemática Projected aggregate methods row partition strategies parallel iterative methods We present in this paper optimal and accelerated row projection algorithms arising from new results that allow us to define the iterate xfc+1 as the projection of xk onto a hyperplane which minimizes its distance to the solution x*. These algorithms also use a novel partition strategy into blocks based on sequential estimations of their condition numbers. Numerical results are given showing the new algorithms are more robust than Krylov subspace based methods, although the latter are generally faster when they converge. Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Matemática Projected aggregate methods row partition strategies parallel iterative methods |
spellingShingle |
Matemática Projected aggregate methods row partition strategies parallel iterative methods Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa Vacchino, María Cristina A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
topic_facet |
Matemática Projected aggregate methods row partition strategies parallel iterative methods |
description |
We present in this paper optimal and accelerated row projection algorithms arising from new results that allow us to define the iterate xfc+1 as the projection of xk onto a hyperplane which minimizes its distance to the solution x*. These algorithms also use a novel partition strategy into blocks based on sequential estimations of their condition numbers. Numerical results are given showing the new algorithms are more robust than Krylov subspace based methods, although the latter are generally faster when they converge. |
format |
Publicacion seriada Publicacion seriada |
author |
Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa Vacchino, María Cristina |
author_facet |
Scolnik, Hugo Daniel Echebest, Nélida Ester Guardarucci, María Teresa Vacchino, María Cristina |
author_sort |
Scolnik, Hugo Daniel |
title |
A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
title_short |
A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
title_full |
A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
title_fullStr |
A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
title_full_unstemmed |
A class of optimized row projection methods for solving large non-symmetric linear systems : Notas de Matemática, 74 |
title_sort |
class of optimized row projection methods for solving large non-symmetric linear systems : notas de matemática, 74 |
publishDate |
2000 |
url |
http://sedici.unlp.edu.ar/handle/10915/172779 |
work_keys_str_mv |
AT scolnikhugodaniel aclassofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT echebestnelidaester aclassofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT guardaruccimariateresa aclassofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT vacchinomariacristina aclassofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT scolnikhugodaniel classofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT echebestnelidaester classofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT guardaruccimariateresa classofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 AT vacchinomariacristina classofoptimizedrowprojectionmethodsforsolvinglargenonsymmetriclinearsystemsnotasdematematica74 |
_version_ |
1827178669796229120 |