Infinitesimal K-theory : Notas de Matemática, 65

In section 1 we develop the language of categories with deformations. In section 2 we construct the localization C —> C[Def-1] for a category with deformations. A general criterion for the existence of derived functors with respect to this localization is established in section 3. In section...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cortiñas, Guillermo Horacio
Formato: Publicacion seriada
Lenguaje:Inglés
Publicado: 1998
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/171370
Aporte de:
id I19-R120-10915-171370
record_format dspace
spelling I19-R120-10915-1713702024-10-10T20:10:40Z http://sedici.unlp.edu.ar/handle/10915/171370 Infinitesimal K-theory : Notas de Matemática, 65 Cortiñas, Guillermo Horacio 1998 2024-10-10T17:16:08Z en Matemática In section 1 we develop the language of categories with deformations. In section 2 we construct the localization C —> C[Def-1] for a category with deformations. A general criterion for the existence of derived functors with respect to this localization is established in section 3. In section 4 we show that both non-commutative de Rham cohomology and the rational 4—construction of the elementary group meet this criterion, and compute their derived functors. The sheaf theoretic approach is developed in section 5 where the character cr mentioned above is constructed. The isomorphism (6) is proven in section 6. Also in this section we conjecture that Hn(A, K®) = 0 for positive n, and show that this conjecture is related to finding a non commutative analogue of Grothendieck’s isomorphism (4). The map (1) is constructed in section 7; a more concrete interpretation of Free'nf as a category of integrable connections with as maps the gauge transformations is discussed. Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
spellingShingle Matemática
Cortiñas, Guillermo Horacio
Infinitesimal K-theory : Notas de Matemática, 65
topic_facet Matemática
description In section 1 we develop the language of categories with deformations. In section 2 we construct the localization C —> C[Def-1] for a category with deformations. A general criterion for the existence of derived functors with respect to this localization is established in section 3. In section 4 we show that both non-commutative de Rham cohomology and the rational 4—construction of the elementary group meet this criterion, and compute their derived functors. The sheaf theoretic approach is developed in section 5 where the character cr mentioned above is constructed. The isomorphism (6) is proven in section 6. Also in this section we conjecture that Hn(A, K®) = 0 for positive n, and show that this conjecture is related to finding a non commutative analogue of Grothendieck’s isomorphism (4). The map (1) is constructed in section 7; a more concrete interpretation of Free'nf as a category of integrable connections with as maps the gauge transformations is discussed.
format Publicacion seriada
Publicacion seriada
author Cortiñas, Guillermo Horacio
author_facet Cortiñas, Guillermo Horacio
author_sort Cortiñas, Guillermo Horacio
title Infinitesimal K-theory : Notas de Matemática, 65
title_short Infinitesimal K-theory : Notas de Matemática, 65
title_full Infinitesimal K-theory : Notas de Matemática, 65
title_fullStr Infinitesimal K-theory : Notas de Matemática, 65
title_full_unstemmed Infinitesimal K-theory : Notas de Matemática, 65
title_sort infinitesimal k-theory : notas de matemática, 65
publishDate 1998
url http://sedici.unlp.edu.ar/handle/10915/171370
work_keys_str_mv AT cortinasguillermohoracio infinitesimalktheorynotasdematematica65
_version_ 1826544371416170496