The Artinian Berger Conjecture : Notas de Matemática, 56
We propose an Artinian version of Berger s Conjecture for curves, concerning the module of Kahler differentials of an algebra. Our version implies Berger’s Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger’s Conjecture holds for c...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Publicacion seriada |
| Lenguaje: | Inglés |
| Publicado: |
1995
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/170674 |
| Aporte de: |
| id |
I19-R120-10915-170674 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1706742024-09-25T20:10:56Z http://sedici.unlp.edu.ar/handle/10915/170674 The Artinian Berger Conjecture : Notas de Matemática, 56 Cortiñas, Guillermo Horacio Geller, Susan C. Weibel, Charles A. 1995 2024-09-25T19:05:43Z en Matemática We propose an Artinian version of Berger s Conjecture for curves, concerning the module of Kahler differentials of an algebra. Our version implies Berger’s Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger’s Conjecture holds for curve singularities whose conductor ideal contains the cube of a maximal ideal. Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática |
| spellingShingle |
Matemática Cortiñas, Guillermo Horacio Geller, Susan C. Weibel, Charles A. The Artinian Berger Conjecture : Notas de Matemática, 56 |
| topic_facet |
Matemática |
| description |
We propose an Artinian version of Berger s Conjecture for curves, concerning the module of Kahler differentials of an algebra. Our version implies Berger’s Conjecture in characteristic 0. We establish our Artinian Berger Conjecture in a number of cases, and prove that Berger’s Conjecture holds for curve singularities whose conductor ideal contains the cube of a maximal ideal. |
| format |
Publicacion seriada Publicacion seriada |
| author |
Cortiñas, Guillermo Horacio Geller, Susan C. Weibel, Charles A. |
| author_facet |
Cortiñas, Guillermo Horacio Geller, Susan C. Weibel, Charles A. |
| author_sort |
Cortiñas, Guillermo Horacio |
| title |
The Artinian Berger Conjecture : Notas de Matemática, 56 |
| title_short |
The Artinian Berger Conjecture : Notas de Matemática, 56 |
| title_full |
The Artinian Berger Conjecture : Notas de Matemática, 56 |
| title_fullStr |
The Artinian Berger Conjecture : Notas de Matemática, 56 |
| title_full_unstemmed |
The Artinian Berger Conjecture : Notas de Matemática, 56 |
| title_sort |
artinian berger conjecture : notas de matemática, 56 |
| publishDate |
1995 |
| url |
http://sedici.unlp.edu.ar/handle/10915/170674 |
| work_keys_str_mv |
AT cortinasguillermohoracio theartinianbergerconjecturenotasdematematica56 AT gellersusanc theartinianbergerconjecturenotasdematematica56 AT weibelcharlesa theartinianbergerconjecturenotasdematematica56 AT cortinasguillermohoracio artinianbergerconjecturenotasdematematica56 AT gellersusanc artinianbergerconjecturenotasdematematica56 AT weibelcharlesa artinianbergerconjecturenotasdematematica56 |
| _version_ |
1825910240434978816 |