Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54
A connected graph G is a tree-clique graph if there exists a spanning tree T (a compatible tree) such that every clique of G is a subtree of T. When T is a path the connected graph G is a proper interval graph which is usually defined as intersection graph of a family of closed intervals of the real...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Publicacion seriada |
| Lenguaje: | Inglés |
| Publicado: |
1994
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/170672 |
| Aporte de: |
| id |
I19-R120-10915-170672 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1706722024-09-26T04:09:01Z http://sedici.unlp.edu.ar/handle/10915/170672 Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 Gutiérrez, Marisa Oubiña, Lía 1994 2024-09-25T18:54:39Z en Matemática A connected graph G is a tree-clique graph if there exists a spanning tree T (a compatible tree) such that every clique of G is a subtree of T. When T is a path the connected graph G is a proper interval graph which is usually defined as intersection graph of a family of closed intervals of the real line such that no interval contains another. We present here metric characterizations of proper interval graphs and extend them to tree-clique graphs. This is done by demonstrating ’’local” properties of tree-clique graphs with respect to the subgraphs induced by paths of a compatible tree. Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática |
| spellingShingle |
Matemática Gutiérrez, Marisa Oubiña, Lía Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| topic_facet |
Matemática |
| description |
A connected graph G is a tree-clique graph if there exists a spanning tree T (a compatible tree) such that every clique of G is a subtree of T. When T is a path the connected graph G is a proper interval graph which is usually defined as intersection graph of a family of closed intervals of the real line such that no interval contains another. We present here metric characterizations of proper interval graphs and extend them to tree-clique graphs. This is done by demonstrating ’’local” properties of tree-clique graphs with respect to the subgraphs induced by paths of a compatible tree. |
| format |
Publicacion seriada Publicacion seriada |
| author |
Gutiérrez, Marisa Oubiña, Lía |
| author_facet |
Gutiérrez, Marisa Oubiña, Lía |
| author_sort |
Gutiérrez, Marisa |
| title |
Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| title_short |
Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| title_full |
Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| title_fullStr |
Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| title_full_unstemmed |
Metric characterizations of proper interval graphs and tree-clique graphs : Notas de Matemática, 54 |
| title_sort |
metric characterizations of proper interval graphs and tree-clique graphs : notas de matemática, 54 |
| publishDate |
1994 |
| url |
http://sedici.unlp.edu.ar/handle/10915/170672 |
| work_keys_str_mv |
AT gutierrezmarisa metriccharacterizationsofproperintervalgraphsandtreecliquegraphsnotasdematematica54 AT oubinalia metriccharacterizationsofproperintervalgraphsandtreecliquegraphsnotasdematematica54 |
| _version_ |
1825910239913836544 |