Network effects error components models
This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in th...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/169449 |
| Aporte de: |
| id |
I19-R120-10915-169449 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1694492024-09-02T20:01:50Z http://sedici.unlp.edu.ar/handle/10915/169449 Network effects error components models Montes Rojas, Gabriel 2018-11 2018 2024-09-02T17:58:51Z en Ciencias Económicas Networks Clusters Moulton factor This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples. Facultad de Ciencias Económicas Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Económicas Networks Clusters Moulton factor |
| spellingShingle |
Ciencias Económicas Networks Clusters Moulton factor Montes Rojas, Gabriel Network effects error components models |
| topic_facet |
Ciencias Económicas Networks Clusters Moulton factor |
| description |
This paper develops a random effects error components structure for network data regression models. In particular, it allows for edge and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the variance-covariance matrix. Network effects will typically imply heteroskedasticity, and as with the Moulton factor, the key role is given by the joint consideration of the intra-network correlation of the error term(s) and the covariates. Then it proposes consistent estimator of the variance components and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show the tests have very good performance in finite samples. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Montes Rojas, Gabriel |
| author_facet |
Montes Rojas, Gabriel |
| author_sort |
Montes Rojas, Gabriel |
| title |
Network effects error components models |
| title_short |
Network effects error components models |
| title_full |
Network effects error components models |
| title_fullStr |
Network effects error components models |
| title_full_unstemmed |
Network effects error components models |
| title_sort |
network effects error components models |
| publishDate |
2018 |
| url |
http://sedici.unlp.edu.ar/handle/10915/169449 |
| work_keys_str_mv |
AT montesrojasgabriel networkeffectserrorcomponentsmodels |
| _version_ |
1809234775886528512 |