An online short-circuit impedance estimation approach to power transformer fault detection
In addition to offline testing in transformers, advanced diagnostic techniques are experiencing significant advancements in on-line monitoring to ensure the continuity of electrical service and to minimize the costs associated with equipment repair and replacement. This paper presents a strategy for...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/167213 |
| Aporte de: |
| id |
I19-R120-10915-167213 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1672132024-06-14T04:09:23Z http://sedici.unlp.edu.ar/handle/10915/167213 An online short-circuit impedance estimation approach to power transformer fault detection Puntano, Lucas Meira, Matías Ruschetti, Cristian Verucchi, Carlos J. Álvarez, Raúl Emilio 2023-11 2023 2024-06-13T14:47:12Z es Ingeniería fault detection impedance measurement power transformer winding impedance In addition to offline testing in transformers, advanced diagnostic techniques are experiencing significant advancements in on-line monitoring to ensure the continuity of electrical service and to minimize the costs associated with equipment repair and replacement. This paper presents a strategy for incipient fault detection in power transformers through online measurement of winding impedances. The strategy is based on calculating the series impedance for each phase, which includes the transformer and the connected equipment, by measuring the electrical variables of the transformer. Finally, a single fault indicator is obtained that provides information on the fault severity and the phase affected. The strategy is tested by finite element method simulations for different load conditions and fault severities. The strategy is validated with laboratory results on a 10 kVA three-phase transformer. The results obtained show the effectiveness of the proposed strategy in detecting faults in power transformers. Instituto de Investigaciones Tecnológicas para Redes y Equipos Eléctricos Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 139-144 |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Español |
| topic |
Ingeniería fault detection impedance measurement power transformer winding impedance |
| spellingShingle |
Ingeniería fault detection impedance measurement power transformer winding impedance Puntano, Lucas Meira, Matías Ruschetti, Cristian Verucchi, Carlos J. Álvarez, Raúl Emilio An online short-circuit impedance estimation approach to power transformer fault detection |
| topic_facet |
Ingeniería fault detection impedance measurement power transformer winding impedance |
| description |
In addition to offline testing in transformers, advanced diagnostic techniques are experiencing significant advancements in on-line monitoring to ensure the continuity of electrical service and to minimize the costs associated with equipment repair and replacement. This paper presents a strategy for incipient fault detection in power transformers through online measurement of winding impedances. The strategy is based on calculating the series impedance for each phase, which includes the transformer and the connected equipment, by measuring the electrical variables of the transformer. Finally, a single fault indicator is obtained that provides information on the fault severity and the phase affected. The strategy is tested by finite element method simulations for different load conditions and fault severities. The strategy is validated with laboratory results on a 10 kVA three-phase transformer. The results obtained show the effectiveness of the proposed strategy in detecting faults in power transformers. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Puntano, Lucas Meira, Matías Ruschetti, Cristian Verucchi, Carlos J. Álvarez, Raúl Emilio |
| author_facet |
Puntano, Lucas Meira, Matías Ruschetti, Cristian Verucchi, Carlos J. Álvarez, Raúl Emilio |
| author_sort |
Puntano, Lucas |
| title |
An online short-circuit impedance estimation approach to power transformer fault detection |
| title_short |
An online short-circuit impedance estimation approach to power transformer fault detection |
| title_full |
An online short-circuit impedance estimation approach to power transformer fault detection |
| title_fullStr |
An online short-circuit impedance estimation approach to power transformer fault detection |
| title_full_unstemmed |
An online short-circuit impedance estimation approach to power transformer fault detection |
| title_sort |
online short-circuit impedance estimation approach to power transformer fault detection |
| publishDate |
2023 |
| url |
http://sedici.unlp.edu.ar/handle/10915/167213 |
| work_keys_str_mv |
AT puntanolucas anonlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT meiramatias anonlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT ruschetticristian anonlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT verucchicarlosj anonlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT alvarezraulemilio anonlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT puntanolucas onlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT meiramatias onlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT ruschetticristian onlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT verucchicarlosj onlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection AT alvarezraulemilio onlineshortcircuitimpedanceestimationapproachtopowertransformerfaultdetection |
| _version_ |
1807223443209322496 |