Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y .
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Publicacion seriada |
| Lenguaje: | Inglés |
| Publicado: |
1970
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/163474 |
| Aporte de: |
| id |
I19-R120-10915-163474 |
|---|---|
| record_format |
dspace |
| spelling |
I19-R120-10915-1634742024-05-09T14:04:19Z http://sedici.unlp.edu.ar/handle/10915/163474 Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 Lieberman, D. Herrera, Miguel 1970 2024-03-05T18:36:16Z en Matemática Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y . Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática |
| spellingShingle |
Matemática Lieberman, D. Herrera, Miguel Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| topic_facet |
Matemática |
| description |
Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y . |
| format |
Publicacion seriada Publicacion seriada |
| author |
Lieberman, D. Herrera, Miguel |
| author_facet |
Lieberman, D. Herrera, Miguel |
| author_sort |
Lieberman, D. |
| title |
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| title_short |
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| title_full |
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| title_fullStr |
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| title_full_unstemmed |
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 |
| title_sort |
duality and the derham cohomology of infinitesimal neighborhoods : notas de matemática, 14 |
| publishDate |
1970 |
| url |
http://sedici.unlp.edu.ar/handle/10915/163474 |
| work_keys_str_mv |
AT liebermand dualityandthederhamcohomologyofinfinitesimalneighborhoodsnotasdematematica14 AT herreramiguel dualityandthederhamcohomologyofinfinitesimalneighborhoodsnotasdematematica14 |
| _version_ |
1807222592754417664 |