Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14

Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y .

Guardado en:
Detalles Bibliográficos
Autores principales: Lieberman, D., Herrera, Miguel
Formato: Publicacion seriada
Lenguaje:Inglés
Publicado: 1970
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/163474
Aporte de:
id I19-R120-10915-163474
record_format dspace
spelling I19-R120-10915-1634742024-05-09T14:04:19Z http://sedici.unlp.edu.ar/handle/10915/163474 Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14 Lieberman, D. Herrera, Miguel 1970 2024-03-05T18:36:16Z en Matemática Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y . Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). Facultad de Ciencias Exactas Publicacion seriada Publicacion seriada http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
spellingShingle Matemática
Lieberman, D.
Herrera, Miguel
Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
topic_facet Matemática
description Our principal application of the techniques developed in this note appears in §7 where we establish the following result. Let X be a nonsingular compact analytic space (resp. a complete algebraic variety over φ) of dimension m and let Y be an arbitrary closed subvariety of X , U=X - Y .
format Publicacion seriada
Publicacion seriada
author Lieberman, D.
Herrera, Miguel
author_facet Lieberman, D.
Herrera, Miguel
author_sort Lieberman, D.
title Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
title_short Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
title_full Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
title_fullStr Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
title_full_unstemmed Duality and the DeRham cohomology of infinitesimal neighborhoods : Notas de Matemática, 14
title_sort duality and the derham cohomology of infinitesimal neighborhoods : notas de matemática, 14
publishDate 1970
url http://sedici.unlp.edu.ar/handle/10915/163474
work_keys_str_mv AT liebermand dualityandthederhamcohomologyofinfinitesimalneighborhoodsnotasdematematica14
AT herreramiguel dualityandthederhamcohomologyofinfinitesimalneighborhoodsnotasdematematica14
_version_ 1807222592754417664