Intermediate task fine-tuning in cancer classification

Reducing the amount of annotated data required to train predictive models is one of the main challenges in applying artificial intelligence to histopathology. In this paper, we propose a method to enhance the performance of deep learning models trained with limited data in the field of digital patho...

Descripción completa

Detalles Bibliográficos
Autores principales: García, Mario Alejandro, Gramática, Martín Nicolás, Ricapito, Juan Pablo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2023
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/160074
Aporte de:
id I19-R120-10915-160074
record_format dspace
spelling I19-R120-10915-1600742023-11-13T20:02:28Z http://sedici.unlp.edu.ar/handle/10915/160074 Intermediate task fine-tuning in cancer classification Clasificación de cancer mediante transferencia de conocimiento con tarea intermedia García, Mario Alejandro Gramática, Martín Nicolás Ricapito, Juan Pablo 2023-10 2023-11-13T14:10:18Z en Ciencias Informáticas deep learning digital pathology intermediate task fine-tuning histopathology transfer learning ajuste fino con tarea intermedia aprendizaje profundo histopatología patología digital Transferencia de conocimientos Reducing the amount of annotated data required to train predictive models is one of the main challenges in applying artificial intelligence to histopathology. In this paper, we propose a method to enhance the performance of deep learning models trained with limited data in the field of digital pathology. The method relies on a two-stage transfer learning process, where an intermediate model serves as a bridge between a pretrained model on ImageNet and the final cancer classification model. The intermediate model is fine-tuned with a dataset of over 4,000,000 images weakly labeled with clinical data extracted from TCGA program. The model obtained through the proposed method significantly outperforms a model trained with a traditional transfer learning process. Reducir la cantidad de datos etiquetados necesarios para entrenar modelos predictivos es uno de los principales desafíos para la aplicación de la inteligencia artificial en patología digital. En este trabajo se propone un método para mejorar la capacidad de predicción de redes neuronales profundas entrenadas con cantidades limitadas de imágenes de patología digital. El método es un proceso de transfer learning de dos etapas, donde se utiliza un modelo intermedio como puente entre un modelo preentrenado con ImageNet y un modelo final de clasificación de cáncer. El modelo intermedio es ajustado con un dataset de más de 4.000.000 de imágenes débilmente etiquetadas con datos clínicos extraídos del programa TCGA. El modelo obtenido a través del método propuesto mejora significativamente los resultados de un modelo ajustado con el proceso tradicional de transfer learning. Facultad de Informática Articulo Articulo http://creativecommons.org/licenses/by-nc/4.0/ Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) application/pdf 135-144
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
deep learning
digital pathology
intermediate task fine-tuning
histopathology
transfer learning
ajuste fino con tarea intermedia
aprendizaje profundo
histopatología
patología digital
Transferencia de conocimientos
spellingShingle Ciencias Informáticas
deep learning
digital pathology
intermediate task fine-tuning
histopathology
transfer learning
ajuste fino con tarea intermedia
aprendizaje profundo
histopatología
patología digital
Transferencia de conocimientos
García, Mario Alejandro
Gramática, Martín Nicolás
Ricapito, Juan Pablo
Intermediate task fine-tuning in cancer classification
topic_facet Ciencias Informáticas
deep learning
digital pathology
intermediate task fine-tuning
histopathology
transfer learning
ajuste fino con tarea intermedia
aprendizaje profundo
histopatología
patología digital
Transferencia de conocimientos
description Reducing the amount of annotated data required to train predictive models is one of the main challenges in applying artificial intelligence to histopathology. In this paper, we propose a method to enhance the performance of deep learning models trained with limited data in the field of digital pathology. The method relies on a two-stage transfer learning process, where an intermediate model serves as a bridge between a pretrained model on ImageNet and the final cancer classification model. The intermediate model is fine-tuned with a dataset of over 4,000,000 images weakly labeled with clinical data extracted from TCGA program. The model obtained through the proposed method significantly outperforms a model trained with a traditional transfer learning process.
format Articulo
Articulo
author García, Mario Alejandro
Gramática, Martín Nicolás
Ricapito, Juan Pablo
author_facet García, Mario Alejandro
Gramática, Martín Nicolás
Ricapito, Juan Pablo
author_sort García, Mario Alejandro
title Intermediate task fine-tuning in cancer classification
title_short Intermediate task fine-tuning in cancer classification
title_full Intermediate task fine-tuning in cancer classification
title_fullStr Intermediate task fine-tuning in cancer classification
title_full_unstemmed Intermediate task fine-tuning in cancer classification
title_sort intermediate task fine-tuning in cancer classification
publishDate 2023
url http://sedici.unlp.edu.ar/handle/10915/160074
work_keys_str_mv AT garciamarioalejandro intermediatetaskfinetuningincancerclassification
AT gramaticamartinnicolas intermediatetaskfinetuningincancerclassification
AT ricapitojuanpablo intermediatetaskfinetuningincancerclassification
AT garciamarioalejandro clasificaciondecancermediantetransferenciadeconocimientocontareaintermedia
AT gramaticamartinnicolas clasificaciondecancermediantetransferenciadeconocimientocontareaintermedia
AT ricapitojuanpablo clasificaciondecancermediantetransferenciadeconocimientocontareaintermedia
_version_ 1807221824199589888