Primeras experiencias en la identificación de personas con riesgo de diabetes en la población argentina usando técnicas de aprendizaje automático
La detección temprana de Diabetes Tipo 2 (DT2) y prediabetes (PDM) representa un desafío para la medicina debido a la ausencia de síntomas patogenómicos y al desconocimiento de los factores de riesgo asociados. El diagnóstico tardío de esta enfermedad puede llevar a complicaciones graves de salud y...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Tesis Tesis de grado |
| Lenguaje: | Español |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/159884 |
| Aporte de: |
| Sumario: | La detección temprana de Diabetes Tipo 2 (DT2) y prediabetes (PDM) representa un desafío para la medicina debido a la ausencia de síntomas patogenómicos y al desconocimiento de los factores de riesgo asociados. El diagnóstico tardío de esta enfermedad puede llevar a complicaciones graves de salud y costos médicos elevados. Asimismo, la remisión de la DT2 es posible en algunas personas, por lo que su detección temprana y control son cruciales. Si bien existen algunos modelos de aprendizaje automático que permiten identificar personas en riesgo, su aplicabilidad puede variar entre poblaciones. La presente investigación propone desarrollar y evaluar modelos predictivos que permitan identificar personas con riesgo de DT2 y PDM en la población Argentina. |
|---|