Some operator inequalities for unitarily invariant norms

Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cano, Cristina, Mosconi, Irene, Stojanoff, Demetrio
Formato: Articulo
Lenguaje:Inglés
Publicado: 2005
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/156335
Aporte de:
id I19-R120-10915-156335
record_format dspace
spelling I19-R120-10915-1563352023-08-16T04:06:11Z http://sedici.unlp.edu.ar/handle/10915/156335 Some operator inequalities for unitarily invariant norms Cano, Cristina Mosconi, Irene Stojanoff, Demetrio 2005 2023-08-15T14:45:02Z en Matemática positive matrices inequalities unitarily invariant norm Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases. Universidad del Comahue Facultad de Ciencias Exactas Articulo Articulo http://creativecommons.org/licenses/by/4.0/ Creative Commons Attribution 4.0 International (CC BY 4.0) application/pdf 53-66
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
positive matrices
inequalities
unitarily invariant norm
spellingShingle Matemática
positive matrices
inequalities
unitarily invariant norm
Cano, Cristina
Mosconi, Irene
Stojanoff, Demetrio
Some operator inequalities for unitarily invariant norms
topic_facet Matemática
positive matrices
inequalities
unitarily invariant norm
description Let L(H) be the algebra of bounded operators on a complex separable Hilbert space H. Let N be a unitarily invariant norm defined on a norm ideal J ⊆ L(H). Given two positive invertible operators P,Q ∊ L(H) and k ∊ (−2, 2], we show that N (PTQ−1 + P−1TQ + kT) ≥ (2 + k)N(T), T ∊ J. This extends Zhang’s inequality for matrices. We prove that this inequality is equivalent to two particular cases of itself, namely P = Q and Q = P−1. We also characterize those numbers k such that the map γ : L(H) → L(H) given by γ(T) = PTQ−1 +P−1TQ+kT is invertible, and we estimate the induced norm of γ−1 acting on the norm ideal J. We compute sharp constants for the involved inequalities in several particular cases.
format Articulo
Articulo
author Cano, Cristina
Mosconi, Irene
Stojanoff, Demetrio
author_facet Cano, Cristina
Mosconi, Irene
Stojanoff, Demetrio
author_sort Cano, Cristina
title Some operator inequalities for unitarily invariant norms
title_short Some operator inequalities for unitarily invariant norms
title_full Some operator inequalities for unitarily invariant norms
title_fullStr Some operator inequalities for unitarily invariant norms
title_full_unstemmed Some operator inequalities for unitarily invariant norms
title_sort some operator inequalities for unitarily invariant norms
publishDate 2005
url http://sedici.unlp.edu.ar/handle/10915/156335
work_keys_str_mv AT canocristina someoperatorinequalitiesforunitarilyinvariantnorms
AT mosconiirene someoperatorinequalitiesforunitarilyinvariantnorms
AT stojanoffdemetrio someoperatorinequalitiesforunitarilyinvariantnorms
_version_ 1807220984995905536