Improving the performance of matrix inversion with a Tesla GPU
We study two different techniques for the computation of a matrix inverse, the traditional approach based on Gaussian factorization and the Gauss-Jordan elimination alternative more suitable for parallel architectures. The target architecture is a current general-purpose multi-core processor (CPU) c...
Autores principales: | , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/152637 http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-03.pdf |
Aporte de: |
id |
I19-R120-10915-152637 |
---|---|
record_format |
dspace |
spelling |
I19-R120-10915-1526372023-05-09T20:04:13Z http://sedici.unlp.edu.ar/handle/10915/152637 http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-03.pdf issn:1851-9326 Improving the performance of matrix inversion with a Tesla GPU Ezzatti, Pablo Quintana Ortí, Enrique S. Remón, Alfredo 2010 2010 2023-05-09T13:55:08Z en Ciencias Informáticas GPU CPU Efficiency We study two different techniques for the computation of a matrix inverse, the traditional approach based on Gaussian factorization and the Gauss-Jordan elimination alternative more suitable for parallel architectures. The target architecture is a current general-purpose multi-core processor (CPU) connected to a graphics processor (GPU). Parallelism is obtained from the use of libraries MKL (for the CPU) and CUBLAS (for the GPU), as well as, performing simultaneously operations in both architectures. Numerical experiments performed on a system equipped with two Intel QuadCore processors and a Tesla C1060 GPU, illustrate the efficiency attained by the Gauss-Jordan elimination implementation. Sociedad Argentina de Informática e Investigación Operativa Objeto de conferencia Objeto de conferencia http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) application/pdf 3211-3219 |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas GPU CPU Efficiency |
spellingShingle |
Ciencias Informáticas GPU CPU Efficiency Ezzatti, Pablo Quintana Ortí, Enrique S. Remón, Alfredo Improving the performance of matrix inversion with a Tesla GPU |
topic_facet |
Ciencias Informáticas GPU CPU Efficiency |
description |
We study two different techniques for the computation of a matrix inverse, the traditional approach based on Gaussian factorization and the Gauss-Jordan elimination alternative more suitable for parallel architectures. The target architecture is a current general-purpose multi-core processor (CPU) connected to a graphics processor (GPU). Parallelism is obtained from the use of libraries MKL (for the CPU) and CUBLAS (for the GPU), as well as, performing simultaneously operations in both architectures. Numerical experiments performed on a system equipped with two Intel QuadCore processors and a Tesla C1060 GPU, illustrate the efficiency attained by the Gauss-Jordan elimination implementation. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Ezzatti, Pablo Quintana Ortí, Enrique S. Remón, Alfredo |
author_facet |
Ezzatti, Pablo Quintana Ortí, Enrique S. Remón, Alfredo |
author_sort |
Ezzatti, Pablo |
title |
Improving the performance of matrix inversion with a Tesla GPU |
title_short |
Improving the performance of matrix inversion with a Tesla GPU |
title_full |
Improving the performance of matrix inversion with a Tesla GPU |
title_fullStr |
Improving the performance of matrix inversion with a Tesla GPU |
title_full_unstemmed |
Improving the performance of matrix inversion with a Tesla GPU |
title_sort |
improving the performance of matrix inversion with a tesla gpu |
publishDate |
2010 |
url |
http://sedici.unlp.edu.ar/handle/10915/152637 http://39jaiio.sadio.org.ar/sites/default/files/39jaiio-hpc-03.pdf |
work_keys_str_mv |
AT ezzattipablo improvingtheperformanceofmatrixinversionwithateslagpu AT quintanaortienriques improvingtheperformanceofmatrixinversionwithateslagpu AT remonalfredo improvingtheperformanceofmatrixinversionwithateslagpu |
_version_ |
1765660136484896768 |