Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1

The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe S...

Descripción completa

Detalles Bibliográficos
Autores principales: Bom, Clecio R., Cortesi, A., Lucatelli, G., Dias, Luciana Olivia, Schubert, P., Oliveira Schwarz, G. B., Cardoso, N. M., Ev, Lima, Mendes de Oliveira, C., Sodré, L., Smith Castelli, Analía Viviana, Ferrari, Fabricio, Damke, G., Overzier, Roderik, Kanaan, Antonio, Ribeiro, T., Schoenell, William
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/147171
Aporte de:
id I19-R120-10915-147171
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Astronómicas
galaxies: fundamental parameters
galaxies: structure
techniques: image processing
methods: miscellaneous
surveys
spellingShingle Ciencias Astronómicas
galaxies: fundamental parameters
galaxies: structure
techniques: image processing
methods: miscellaneous
surveys
Bom, Clecio R.
Cortesi, A.
Lucatelli, G.
Dias, Luciana Olivia
Schubert, P.
Oliveira Schwarz, G. B.
Cardoso, N. M.
Ev, Lima
Mendes de Oliveira, C.
Sodré, L.
Smith Castelli, Analía Viviana
Ferrari, Fabricio
Damke, G.
Overzier, Roderik
Kanaan, Antonio
Ribeiro, T.
Schoenell, William
Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
topic_facet Ciencias Astronómicas
galaxies: fundamental parameters
galaxies: structure
techniques: image processing
methods: miscellaneous
surveys
description The morphological diversity of galaxies is a relevant probe of galaxy evolution and cosmological structure formation, but the classification of galaxies in large sky surveys is becoming a significant challenge. We use data from the Stripe-82 area observed by the Southern Photometric Local Universe Survey (S-PLUS) in 12 optical bands, and present a catalogue of the morphologies of galaxies brighter than r = 17 mag determined both using a novel multiband morphometric fitting technique and Convolutional Neural Networks (CNNs) for computer vision. Using the CNNs, we find that, compared to our baseline results with three bands, the performance increases when using 5 broad and 3 narrow bands, but is poorer when using the full 12 band S-PLUS image set. However, the best result is still achieved with just three optical bands when using pre-trained network weights from an ImageNet data set. These results demonstrate the importance of using prior knowledge about neural network weights based on training in unrelated, extensive data sets, when available. Our catalogue contains 3274 galaxies in Stripe-82 that are not present in Galaxy Zoo 1 (GZ1), and we also provide our classifications for 4686 galaxies that were considered ambiguous in GZ1. Finally, we present a prospect of a novel way to take advantage of 12 band information for morphological classification using morphometric features, and we release a model that has been pre-trained on several bands that could be adapted for classifications using data from other surveys. The morphological catalogues are publicly available.
format Articulo
Preprint
author Bom, Clecio R.
Cortesi, A.
Lucatelli, G.
Dias, Luciana Olivia
Schubert, P.
Oliveira Schwarz, G. B.
Cardoso, N. M.
Ev, Lima
Mendes de Oliveira, C.
Sodré, L.
Smith Castelli, Analía Viviana
Ferrari, Fabricio
Damke, G.
Overzier, Roderik
Kanaan, Antonio
Ribeiro, T.
Schoenell, William
author_facet Bom, Clecio R.
Cortesi, A.
Lucatelli, G.
Dias, Luciana Olivia
Schubert, P.
Oliveira Schwarz, G. B.
Cardoso, N. M.
Ev, Lima
Mendes de Oliveira, C.
Sodré, L.
Smith Castelli, Analía Viviana
Ferrari, Fabricio
Damke, G.
Overzier, Roderik
Kanaan, Antonio
Ribeiro, T.
Schoenell, William
author_sort Bom, Clecio R.
title Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
title_short Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
title_full Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
title_fullStr Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
title_full_unstemmed Deep Learning assessment of galaxy morphology in S-PLUS Data Release 1
title_sort deep learning assessment of galaxy morphology in s-plus data release 1
publishDate 2021
url http://sedici.unlp.edu.ar/handle/10915/147171
work_keys_str_mv AT bomclecior deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT cortesia deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT lucatellig deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT diaslucianaolivia deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT schubertp deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT oliveiraschwarzgb deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT cardosonm deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT evlima deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT mendesdeoliveirac deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT sodrel deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT smithcastellianaliaviviana deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT ferrarifabricio deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT damkeg deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT overzierroderik deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT kanaanantonio deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT ribeirot deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
AT schoenellwilliam deeplearningassessmentofgalaxymorphologyinsplusdatarelease1
bdutipo_str Repositorios
_version_ 1764820461043056640