Even-odd entanglement in boson and spin systems

We examine the entanglement entropy of the even half of a translationally invariant finite chain or lattice in its ground state. This entropy measures the entanglement between the even and odd halves (each forming a 'comb' of n/2 sites) and can be expected to be extensive for short-range c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rossignoli, Raúl Dante, Canosa, Norma Beatriz, Matera, Juan Mauricio
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/142069
Aporte de:
id I19-R120-10915-142069
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Ciencias Exactas
entanglement entropy
bosonic systems
spin chains
spellingShingle Física
Ciencias Exactas
entanglement entropy
bosonic systems
spin chains
Rossignoli, Raúl Dante
Canosa, Norma Beatriz
Matera, Juan Mauricio
Even-odd entanglement in boson and spin systems
topic_facet Física
Ciencias Exactas
entanglement entropy
bosonic systems
spin chains
description We examine the entanglement entropy of the even half of a translationally invariant finite chain or lattice in its ground state. This entropy measures the entanglement between the even and odd halves (each forming a 'comb' of n/2 sites) and can be expected to be extensive for short-range couplings away from criticality. We first consider bosonic systems with quadratic couplings, where analytic expressions for arbitrary dimensions can be provided. The bosonic treatment is then applied to finite spin chains and arrays by means of the random-phase approximation. Results for first-neighbor anisotropic XY couplings indicate that, while at strong magnetic fields this entropy is strictly extensive, at weak fields important deviations arise, stemming from parity-breaking effects and the presence of a factorizing field (in the vicinity of which it becomes size-independent and identical to the entropy of a contiguous half). Exact numerical results for small spin s chains are shown to be in agreement with the bosonic random-phase approximation prediction.
format Articulo
Preprint
author Rossignoli, Raúl Dante
Canosa, Norma Beatriz
Matera, Juan Mauricio
author_facet Rossignoli, Raúl Dante
Canosa, Norma Beatriz
Matera, Juan Mauricio
author_sort Rossignoli, Raúl Dante
title Even-odd entanglement in boson and spin systems
title_short Even-odd entanglement in boson and spin systems
title_full Even-odd entanglement in boson and spin systems
title_fullStr Even-odd entanglement in boson and spin systems
title_full_unstemmed Even-odd entanglement in boson and spin systems
title_sort even-odd entanglement in boson and spin systems
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/142069
work_keys_str_mv AT rossignolirauldante evenoddentanglementinbosonandspinsystems
AT canosanormabeatriz evenoddentanglementinbosonandspinsystems
AT materajuanmauricio evenoddentanglementinbosonandspinsystems
bdutipo_str Repositorios
_version_ 1764820458727800834