Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms
When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/140636 |
| Aporte de: |
| id |
I19-R120-10915-140636 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU |
| spellingShingle |
Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU Guidet, Sebastián Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. Comparative analysis of exhaustive searching on a massive finger-vein database over multi-node/multi-core and multi-GPU platforms |
| topic_facet |
Ciencias Informáticas High Performance Computing identification of individuals Local linear binary pattern Finger veins GPU |
| description |
When searching on unstructured data (video, images, etc.), response times are a critical factor. In this work we propose an implementation on two types of multi-GPU and multi-node/multi-core platforms, for massive searches. The presented method aims to reduce the time involved in the search process by solving simultaneous queries over the system and a database of millions of elements. The results show that the multi-GPU approach is 1.6 times superior to the multi-node/multi-core algorithm. Moreover, in both algorithms the speedup is directly proportional to the number of nodes reaching 156x for 4 GPUs, and 87x in the case of the hybrid multi-node/multi-core algorithm. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Guidet, Sebastián Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. |
| author_facet |
Guidet, Sebastián Hernández-García, Ruber Frati, Fernando Emmanuel Barrientos, Ricardo J. |
| author_sort |
Guidet, Sebastián |
| title |
Comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-GPU platforms |
| title_short |
Comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-GPU platforms |
| title_full |
Comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-GPU platforms |
| title_fullStr |
Comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-GPU platforms |
| title_full_unstemmed |
Comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-GPU platforms |
| title_sort |
comparative analysis of exhaustive searching on a massive finger-vein database over
multi-node/multi-core and multi-gpu platforms |
| publishDate |
2022 |
| url |
http://sedici.unlp.edu.ar/handle/10915/140636 |
| work_keys_str_mv |
AT guidetsebastian comparativeanalysisofexhaustivesearchingonamassivefingerveindatabaseovermultinodemulticoreandmultigpuplatforms AT hernandezgarciaruber comparativeanalysisofexhaustivesearchingonamassivefingerveindatabaseovermultinodemulticoreandmultigpuplatforms AT fratifernandoemmanuel comparativeanalysisofexhaustivesearchingonamassivefingerveindatabaseovermultinodemulticoreandmultigpuplatforms AT barrientosricardoj comparativeanalysisofexhaustivesearchingonamassivefingerveindatabaseovermultinodemulticoreandmultigpuplatforms |
| bdutipo_str |
Repositorios |
| _version_ |
1764820459233214464 |