Principal congruences in weak Heyting algebras
Let A be a weak Heyting algebra and let a, b ∈ A. We give a description for the congruence generated by the pair (a, b), and we use it in order to give a necessary and sufficient condition for a function f : Ak → A to be compatible with every congruence of A. We also find conditions on a not necessa...
Autor principal: | |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2016
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/138934 |
Aporte de: |
id |
I19-R120-10915-138934 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Matemática |
spellingShingle |
Matemática San Martín, Hernán Javier Principal congruences in weak Heyting algebras |
topic_facet |
Matemática |
description |
Let A be a weak Heyting algebra and let a, b ∈ A. We give a description for the congruence generated by the pair (a, b), and we use it in order to give a necessary and sufficient condition for a function f : Ak → A to be compatible with every congruence of A. We also find conditions on a not necessarily polynomial function g(a, b) in A that imply that the function a → min{b ∈ A : g(a, b) ≤ b} is compatible when defined. |
format |
Articulo Articulo |
author |
San Martín, Hernán Javier |
author_facet |
San Martín, Hernán Javier |
author_sort |
San Martín, Hernán Javier |
title |
Principal congruences in weak Heyting algebras |
title_short |
Principal congruences in weak Heyting algebras |
title_full |
Principal congruences in weak Heyting algebras |
title_fullStr |
Principal congruences in weak Heyting algebras |
title_full_unstemmed |
Principal congruences in weak Heyting algebras |
title_sort |
principal congruences in weak heyting algebras |
publishDate |
2016 |
url |
http://sedici.unlp.edu.ar/handle/10915/138934 |
work_keys_str_mv |
AT sanmartinhernanjavier principalcongruencesinweakheytingalgebras |
bdutipo_str |
Repositorios |
_version_ |
1764820458143744000 |