La dispersión espectral y sus aplicaciones en el análisis matricial y la teoría de operadores
La teoría de perturbaciones constituye un tópico de estudio dentro del análisis matricial y la teoría de operadores. Asociados a este tópico, se encuentran los temas clásicos de álgebra lineal numérica y teoría de la aproximación. En este contexto, podemos pensar en el estudio de la sensibilidad d...
Guardado en:
| Autor principal: | |
|---|---|
| Otros Autores: | |
| Formato: | Tesis Tesis de doctorado |
| Lenguaje: | Español |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/135375 https://doi.org/10.35537/10915/135375 |
| Aporte de: |
| Sumario: | La teoría de perturbaciones constituye un tópico de estudio dentro del análisis matricial y la teoría de operadores. Asociados a este tópico, se encuentran los temas clásicos de álgebra lineal numérica y teoría de la aproximación.
En este contexto, podemos pensar en el estudio de la sensibilidad de los valores de Ritz y los cocientes de Rayleigh de matrices autoadjuntas, es decir, los cambios en los autovalores de compresiones de matrices autoadjuntas, que es un campo de investigación sólido y bien establecido en estas áreas. |
|---|