Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a d...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/132531 |
| Aporte de: |
| id |
I19-R120-10915-132531 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Biología Collective behavior Swarming. active matter Bose-Einstein condensates Collective dynamics |
| spellingShingle |
Física Biología Collective behavior Swarming. active matter Bose-Einstein condensates Collective dynamics Cavagna, Andrea Di Carlo, Luca Giardina, Irene Grandinetti, Luca Grigera, Tomás Sebastián Pisegna, Giulia Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| topic_facet |
Física Biología Collective behavior Swarming. active matter Bose-Einstein condensates Collective dynamics |
| description |
We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments. |
| format |
Articulo Articulo |
| author |
Cavagna, Andrea Di Carlo, Luca Giardina, Irene Grandinetti, Luca Grigera, Tomás Sebastián Pisegna, Giulia |
| author_facet |
Cavagna, Andrea Di Carlo, Luca Giardina, Irene Grandinetti, Luca Grigera, Tomás Sebastián Pisegna, Giulia |
| author_sort |
Cavagna, Andrea |
| title |
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| title_short |
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| title_full |
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| title_fullStr |
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| title_full_unstemmed |
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms |
| title_sort |
dynamical renormalization group approach to the collective behavior of swarms |
| publishDate |
2019 |
| url |
http://sedici.unlp.edu.ar/handle/10915/132531 |
| work_keys_str_mv |
AT cavagnaandrea dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms AT dicarloluca dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms AT giardinairene dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms AT grandinettiluca dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms AT grigeratomassebastian dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms AT pisegnagiulia dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms |
| bdutipo_str |
Repositorios |
| _version_ |
1764820454074220544 |