Dynamical Renormalization Group Approach to the Collective Behavior of Swarms

We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cavagna, Andrea, Di Carlo, Luca, Giardina, Irene, Grandinetti, Luca, Grigera, Tomás Sebastián, Pisegna, Giulia
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/132531
Aporte de:
id I19-R120-10915-132531
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
spellingShingle Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
topic_facet Física
Biología
Collective behavior
Swarming. active matter
Bose-Einstein condensates
Collective dynamics
description We study the critical behavior of a model with nondissipative couplings aimed at describing the collective behavior of natural swarms, using the dynamical renormalization group under a fixed-network approximation. At one loop, we find a crossover between an unstable fixed point, characterized by a dynamical critical exponent z ¼ d=2, and a stable fixed point with z ¼ 2, a result we confirm through numerical simulations. The crossover is regulated by a length scale given by the ratio between the transport coefficient and the effective friction, so that in finite-size biological systems with low dissipation, dynamics is ruled by the unstable fixed point. In three dimensions this mechanism gives z ¼ 3=2, a value significantly closer to the experimental window, 1.0 ≤ z ≤ 1.3, than the value z ≈ 2 numerically found in fully dissipative models, either at or off equilibrium. This result indicates that nondissipative dynamical couplings are necessary to develop a theory of natural swarms fully consistent with experiments.
format Articulo
Articulo
author Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
author_facet Cavagna, Andrea
Di Carlo, Luca
Giardina, Irene
Grandinetti, Luca
Grigera, Tomás Sebastián
Pisegna, Giulia
author_sort Cavagna, Andrea
title Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_short Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_full Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_fullStr Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_full_unstemmed Dynamical Renormalization Group Approach to the Collective Behavior of Swarms
title_sort dynamical renormalization group approach to the collective behavior of swarms
publishDate 2019
url http://sedici.unlp.edu.ar/handle/10915/132531
work_keys_str_mv AT cavagnaandrea dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
AT dicarloluca dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
AT giardinairene dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
AT grandinettiluca dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
AT grigeratomassebastian dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
AT pisegnagiulia dynamicalrenormalizationgroupapproachtothecollectivebehaviorofswarms
bdutipo_str Repositorios
_version_ 1764820454074220544