On a generalized entropic uncertainty relation in the case of the qubit

We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zozor, Steeve, Bosyk, Gustavo Martín, Portesi, Mariela Adelina
Formato: Articulo
Lenguaje:Inglés
Publicado: 2013
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/132336
Aporte de:
id I19-R120-10915-132336
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
spellingShingle Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
Zozor, Steeve
Bosyk, Gustavo Martín
Portesi, Mariela Adelina
On a generalized entropic uncertainty relation in the case of the qubit
topic_facet Física
Foundations of quantum mechanics; measurement theory
Entropy and other measures of information
Formalism
Quantum systems with finite Hilbert space
description We revisit generalized entropic formulations of the uncertainty principle for an arbitrary pair of quantum observables in two-dimensional Hilbert space. Rényi entropy is used as an uncertainty measure associated with the distribution probabilities corresponding to the outcomes of the observables. We derive a general expression for the tight lower bound of the sum of Rényi entropies for any couple of (positive) entropic indices (α,β). Thus, we have overcome the Holder conjugacy constraint imposed on the entropic indices by Riesz–Thorin theorem. In addition, we present an analytical expression for the tight bound inside the square [0, 1/2]2 in the α–β plane, and a semi-analytical expression on the line β = α. It is seen that previous results are included as particular cases. Moreover we present a semi-analytical, suboptimal bound for any couple of indices. In all cases, we provide the minimizing states.
format Articulo
Articulo
author Zozor, Steeve
Bosyk, Gustavo Martín
Portesi, Mariela Adelina
author_facet Zozor, Steeve
Bosyk, Gustavo Martín
Portesi, Mariela Adelina
author_sort Zozor, Steeve
title On a generalized entropic uncertainty relation in the case of the qubit
title_short On a generalized entropic uncertainty relation in the case of the qubit
title_full On a generalized entropic uncertainty relation in the case of the qubit
title_fullStr On a generalized entropic uncertainty relation in the case of the qubit
title_full_unstemmed On a generalized entropic uncertainty relation in the case of the qubit
title_sort on a generalized entropic uncertainty relation in the case of the qubit
publishDate 2013
url http://sedici.unlp.edu.ar/handle/10915/132336
work_keys_str_mv AT zozorsteeve onageneralizedentropicuncertaintyrelationinthecaseofthequbit
AT bosykgustavomartin onageneralizedentropicuncertaintyrelationinthecaseofthequbit
AT portesimarielaadelina onageneralizedentropicuncertaintyrelationinthecaseofthequbit
bdutipo_str Repositorios
_version_ 1764820456333901824