Modular Hamiltonian for holographic excited states
In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Ri...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/131884 |
Aporte de: |
id |
I19-R120-10915-131884 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Exactas Física Conformal field theory Gauge-gravity dualities Quantum field theory Particles & Fields Gravitation, Cosmology & Astrophysics Quantum Information |
spellingShingle |
Ciencias Exactas Física Conformal field theory Gauge-gravity dualities Quantum field theory Particles & Fields Gravitation, Cosmology & Astrophysics Quantum Information Arias, Raúl Eduardo Botta Cantcheff, Marcelo Ángel Nicolás Martínez, Pedro Jorge Zárate Chahín, Juan Felipe Modular Hamiltonian for holographic excited states |
topic_facet |
Ciencias Exactas Física Conformal field theory Gauge-gravity dualities Quantum field theory Particles & Fields Gravitation, Cosmology & Astrophysics Quantum Information |
description |
In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry. We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation. Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general prescription. |
format |
Articulo Articulo |
author |
Arias, Raúl Eduardo Botta Cantcheff, Marcelo Ángel Nicolás Martínez, Pedro Jorge Zárate Chahín, Juan Felipe |
author_facet |
Arias, Raúl Eduardo Botta Cantcheff, Marcelo Ángel Nicolás Martínez, Pedro Jorge Zárate Chahín, Juan Felipe |
author_sort |
Arias, Raúl Eduardo |
title |
Modular Hamiltonian for holographic excited states |
title_short |
Modular Hamiltonian for holographic excited states |
title_full |
Modular Hamiltonian for holographic excited states |
title_fullStr |
Modular Hamiltonian for holographic excited states |
title_full_unstemmed |
Modular Hamiltonian for holographic excited states |
title_sort |
modular hamiltonian for holographic excited states |
publishDate |
2020 |
url |
http://sedici.unlp.edu.ar/handle/10915/131884 |
work_keys_str_mv |
AT ariasrauleduardo modularhamiltonianforholographicexcitedstates AT bottacantcheffmarceloangelnicolas modularhamiltonianforholographicexcitedstates AT martinezpedrojorge modularhamiltonianforholographicexcitedstates AT zaratechahinjuanfelipe modularhamiltonianforholographicexcitedstates |
bdutipo_str |
Repositorios |
_version_ |
1764820453574049793 |