Mixed estimates for singular integrals on weighted Hardy spaces

In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces H<sup>p</sup><sub>w</sub>, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A<sub>∞</sub> class. We deal with Fourier multipli...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cejas, María Eugenia, Dalmasso, Estefanía
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/131013
Aporte de:
id I19-R120-10915-131013
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Weighted Hardy spaces
Singular integrals
Mixed estimates
Calderón–Zygmund operators
Fourier multipliers
spellingShingle Ciencias Exactas
Weighted Hardy spaces
Singular integrals
Mixed estimates
Calderón–Zygmund operators
Fourier multipliers
Cejas, María Eugenia
Dalmasso, Estefanía
Mixed estimates for singular integrals on weighted Hardy spaces
topic_facet Ciencias Exactas
Weighted Hardy spaces
Singular integrals
Mixed estimates
Calderón–Zygmund operators
Fourier multipliers
description In this paper we give quantitative bounds for the norms of different kinds of singular integral operators on weighted Hardy spaces H<sup>p</sup><sub>w</sub>, where 0 < p ≤ 1 and w is a weight in the Muckenhoupt A<sub>∞</sub> class. We deal with Fourier multiplier operators, Calderon–Zygmund operators of homogeneous type which are particular cases of the first ones, and, more generally, we study singular integrals of convolution type. In order to prove mixed estimates in the setting of weighted Hardy spaces, we need to introduce several characterizations of weighted Hardy spaces by means of square functions, Littlewood–Paley functions and the grand maximal function. We also establish explicit quantitative bounds depending on the weight w when switching between the H<sup>p</sup><sub>w</sub>-norms defined by the Littlewood–Paley–Stein square function and its discrete version, and also by applying the mixed bound A<sub>q</sub>–A<sub>∞</sub> result for the vector-valued extension of the Hardy–Littlewood maximal operator given in Buckley (Trans Am Math Soc 340(1):253–272, 1993).
format Articulo
Articulo
author Cejas, María Eugenia
Dalmasso, Estefanía
author_facet Cejas, María Eugenia
Dalmasso, Estefanía
author_sort Cejas, María Eugenia
title Mixed estimates for singular integrals on weighted Hardy spaces
title_short Mixed estimates for singular integrals on weighted Hardy spaces
title_full Mixed estimates for singular integrals on weighted Hardy spaces
title_fullStr Mixed estimates for singular integrals on weighted Hardy spaces
title_full_unstemmed Mixed estimates for singular integrals on weighted Hardy spaces
title_sort mixed estimates for singular integrals on weighted hardy spaces
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/131013
work_keys_str_mv AT cejasmariaeugenia mixedestimatesforsingularintegralsonweightedhardyspaces
AT dalmassoestefania mixedestimatesforsingularintegralsonweightedhardyspaces
bdutipo_str Repositorios
_version_ 1764820453135745025