Accurate eigenvalues of bounded oscillators

We calculate accurate eigenvalues of a bounded oscillator by means of the Riccati–Pade method that is based on a rational approximation to a regularized logarithmic derivative of the wavefunction. Sequences of roots of Hankel determinants approach the model eigenvalues from below with a remarkable c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Fernández, Francisco Marcelo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2008
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129652
Aporte de:
id I19-R120-10915-129652
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Solutions of wave equations
Bound states
spellingShingle Física
Solutions of wave equations
Bound states
Fernández, Francisco Marcelo
Accurate eigenvalues of bounded oscillators
topic_facet Física
Solutions of wave equations
Bound states
description We calculate accurate eigenvalues of a bounded oscillator by means of the Riccati–Pade method that is based on a rational approximation to a regularized logarithmic derivative of the wavefunction. Sequences of roots of Hankel determinants approach the model eigenvalues from below with a remarkable convergence rate.
format Articulo
Articulo
author Fernández, Francisco Marcelo
author_facet Fernández, Francisco Marcelo
author_sort Fernández, Francisco Marcelo
title Accurate eigenvalues of bounded oscillators
title_short Accurate eigenvalues of bounded oscillators
title_full Accurate eigenvalues of bounded oscillators
title_fullStr Accurate eigenvalues of bounded oscillators
title_full_unstemmed Accurate eigenvalues of bounded oscillators
title_sort accurate eigenvalues of bounded oscillators
publishDate 2008
url http://sedici.unlp.edu.ar/handle/10915/129652
work_keys_str_mv AT fernandezfranciscomarcelo accurateeigenvaluesofboundedoscillators
bdutipo_str Repositorios
_version_ 1764820454685540352