On the Lattice Structure of Probability Spaces in Quantum Mechanics

Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes’ Max-En...

Descripción completa

Detalles Bibliográficos
Autores principales: Holik, Federico Hernán, Massri, César, Zuberman, Leandro, Plastino, Ángel Luis
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129639
Aporte de:
id I19-R120-10915-129639
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
entanglement-quantum information
convex sets
MaxEnt approach
spellingShingle Física
entanglement-quantum information
convex sets
MaxEnt approach
Holik, Federico Hernán
Massri, César
Zuberman, Leandro
Plastino, Ángel Luis
On the Lattice Structure of Probability Spaces in Quantum Mechanics
topic_facet Física
entanglement-quantum information
convex sets
MaxEnt approach
description Let C be the set of all possible quantum states. We study the convex subsets of C with attention focused on the lattice theoretical structure of these convex subsets and, as a result, find a framework capable of unifying several aspects of quantum mechanics, including entanglement and Jaynes’ Max-Ent principle. We also encounter links with entanglement witnesses, which leads to a new separability criteria expressed in lattice language. We also provide an extension of a separability criteria based on convex polytopes to the infinite dimensional case and show that it reveals interesting facets concerning the geometrical structure of the convex subsets. It is seen that the above mentioned framework is also capable of generalization to any statistical theory via the so-called convex operational models’ approach. In particular, we show how to extend the geometrical structure underlying entanglement to any statistical model, an extension which may be useful for studying correlations in different generalizations of quantum mechanics.
format Articulo
Preprint
author Holik, Federico Hernán
Massri, César
Zuberman, Leandro
Plastino, Ángel Luis
author_facet Holik, Federico Hernán
Massri, César
Zuberman, Leandro
Plastino, Ángel Luis
author_sort Holik, Federico Hernán
title On the Lattice Structure of Probability Spaces in Quantum Mechanics
title_short On the Lattice Structure of Probability Spaces in Quantum Mechanics
title_full On the Lattice Structure of Probability Spaces in Quantum Mechanics
title_fullStr On the Lattice Structure of Probability Spaces in Quantum Mechanics
title_full_unstemmed On the Lattice Structure of Probability Spaces in Quantum Mechanics
title_sort on the lattice structure of probability spaces in quantum mechanics
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/129639
work_keys_str_mv AT holikfedericohernan onthelatticestructureofprobabilityspacesinquantummechanics
AT massricesar onthelatticestructureofprobabilityspacesinquantummechanics
AT zubermanleandro onthelatticestructureofprobabilityspacesinquantummechanics
AT plastinoangelluis onthelatticestructureofprobabilityspacesinquantummechanics
bdutipo_str Repositorios
_version_ 1764820454655131649