Graphene and non-Abelian quantization

In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian w...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Falomir, Horacio Alberto, Gamboa, Jorge, Loewe, Marcelo, Nieto, Mariela Natalia
Formato: Articulo
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129601
https://iopscience.iop.org/article/10.1088/1751-8113/45/13/135308
Aporte de:
id I19-R120-10915-129601
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
spellingShingle Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
Falomir, Horacio Alberto
Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
Graphene and non-Abelian quantization
topic_facet Ciencias Exactas
Física
graphene
Heisenberg algebra
perturbation theory
description In this article we employ a simple nonrelativistic model to describe the low energy excitation of graphene. The model is based on a deformation of the Heisenberg algebra which makes the commutator of momenta proportional to the pseudo-spin. We solve the Landau problem for the resulting Hamiltonian which reduces, in the large mass limit while keeping fixed the Fermi velocity, to the usual linear one employed to describe these excitations as massless Dirac fermions. This model, extended to negative mass, allows to reproduce the leading terms in the low energy expansion of the dispersion relation for both nearest and next-to-nearest neighbor interactions. Taking into account the contributions of both Dirac points, the resulting Hall conductivity, evaluated with a $\zeta$-function approach, is consistent with the anomalous integer quantum Hall effect found in graphene. Moreover, when considered in first order perturbation theory, it is shown that the next-to-leading term in the interaction between nearest neighbor produces no modifications in the spectrum of the model while an electric field perpendicular to the magnetic field produces just a rigid shift of this spectrum.
format Articulo
Articulo
author Falomir, Horacio Alberto
Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
author_facet Falomir, Horacio Alberto
Gamboa, Jorge
Loewe, Marcelo
Nieto, Mariela Natalia
author_sort Falomir, Horacio Alberto
title Graphene and non-Abelian quantization
title_short Graphene and non-Abelian quantization
title_full Graphene and non-Abelian quantization
title_fullStr Graphene and non-Abelian quantization
title_full_unstemmed Graphene and non-Abelian quantization
title_sort graphene and non-abelian quantization
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/129601
https://iopscience.iop.org/article/10.1088/1751-8113/45/13/135308
work_keys_str_mv AT falomirhoracioalberto grapheneandnonabelianquantization
AT gamboajorge grapheneandnonabelianquantization
AT loewemarcelo grapheneandnonabelianquantization
AT nietomarielanatalia grapheneandnonabelianquantization
bdutipo_str Repositorios
_version_ 1764820454595362816