Pattern Recognition in Non-Kolmogorovian Structures

We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov’s...

Descripción completa

Detalles Bibliográficos
Autores principales: Holik, Federico Hernán, Sergioli, Giuseppe, Freytes, Hector, Plastino, Ángel Luis
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2018
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/129315
Aporte de:
id I19-R120-10915-129315
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Matemática
Quantum pattern recognition
Quantum algorithms
Convex operational models
spellingShingle Física
Matemática
Quantum pattern recognition
Quantum algorithms
Convex operational models
Holik, Federico Hernán
Sergioli, Giuseppe
Freytes, Hector
Plastino, Ángel Luis
Pattern Recognition in Non-Kolmogorovian Structures
topic_facet Física
Matemática
Quantum pattern recognition
Quantum algorithms
Convex operational models
description We present a generalization of the problem of pattern recognition to arbitrary probabilistic models. This version deals with the problem of recognizing an individual pattern among a family of different species or classes of objects which obey probabilistic laws which do not comply with Kolmogorov’s axioms. We show that such a scenario accommodates many important examples, and in particular, we provide a rigorous definition of the classical and the quantum pattern recognition problems, respectively. Our framework allows for the introduction of non-trivial correlations (as entanglement or discord) between the different species involved, opening the door to a new way of harnessing these physical resources for solving pattern recognition problems. Finally, we present some examples and discuss the computational complexity of the quantum pattern recognition problem, showing that the most important quantum computation algorithms can be described as non-Kolmogorovian pattern recognition problems.
format Articulo
Preprint
author Holik, Federico Hernán
Sergioli, Giuseppe
Freytes, Hector
Plastino, Ángel Luis
author_facet Holik, Federico Hernán
Sergioli, Giuseppe
Freytes, Hector
Plastino, Ángel Luis
author_sort Holik, Federico Hernán
title Pattern Recognition in Non-Kolmogorovian Structures
title_short Pattern Recognition in Non-Kolmogorovian Structures
title_full Pattern Recognition in Non-Kolmogorovian Structures
title_fullStr Pattern Recognition in Non-Kolmogorovian Structures
title_full_unstemmed Pattern Recognition in Non-Kolmogorovian Structures
title_sort pattern recognition in non-kolmogorovian structures
publishDate 2018
url http://sedici.unlp.edu.ar/handle/10915/129315
work_keys_str_mv AT holikfedericohernan patternrecognitioninnonkolmogorovianstructures
AT sergioligiuseppe patternrecognitioninnonkolmogorovianstructures
AT freyteshector patternrecognitioninnonkolmogorovianstructures
AT plastinoangelluis patternrecognitioninnonkolmogorovianstructures
bdutipo_str Repositorios
_version_ 1764820452328341506