Energy-Efficient Algebra Kernels in FPGA for High Performance Computing

The dissemination of multi-core architectures and the later irruption of massively parallel devices, led to a revolution in High-Performance Computing (HPC) platforms in the last decades. As a result, Field- Programmable Gate Arrays (FPGAs) are re-emerging as a versatile and more energy-efficient al...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Favaro, Federico, Dufrechou, Ernesto, Ezzatti, Pablo, Oliver, Juan P.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
HLS
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/128258
Aporte de:
id I19-R120-10915-128258
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Dense and sparse NLA
FPGA
HLS
Energy consumption
Algebra densa y dispersa
Consumo de energía
spellingShingle Ciencias Informáticas
Dense and sparse NLA
FPGA
HLS
Energy consumption
Algebra densa y dispersa
Consumo de energía
Favaro, Federico
Dufrechou, Ernesto
Ezzatti, Pablo
Oliver, Juan P.
Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
topic_facet Ciencias Informáticas
Dense and sparse NLA
FPGA
HLS
Energy consumption
Algebra densa y dispersa
Consumo de energía
description The dissemination of multi-core architectures and the later irruption of massively parallel devices, led to a revolution in High-Performance Computing (HPC) platforms in the last decades. As a result, Field- Programmable Gate Arrays (FPGAs) are re-emerging as a versatile and more energy-efficient alternative to other platforms. Traditional FPGA design implies using low-level Hardware Description Languages (HDL) such as VHDL or Verilog, which follow an entirely different programming model than standard software languages, and their use requires specialized knowledge of the underlying hardware. In the last years, manufacturers started to make big efforts to provide High-Level Synthesis (HLS) tools, in order to allow a grater adoption of FPGAs in the HPC coimnunity. Our work studies the use of multi-core hardware and different FPGAs to address Numerical Linear Algebra (NLA) kernels such as the general matrix multiplication (GEMM) and the sparse matrix-vector multiplication (SpMV). Specifically, we compare the behavior of fine-tuned kernels in a multi-core CPU processor and HLS implementations on FPGAs. We perform the experimental evaluation of our implementations on a low-end and a cutting-edge FPGA platform, in terms of runtime and energy consumption, and compare the results against the Intel MKL library in CPU.
format Articulo
Articulo
author Favaro, Federico
Dufrechou, Ernesto
Ezzatti, Pablo
Oliver, Juan P.
author_facet Favaro, Federico
Dufrechou, Ernesto
Ezzatti, Pablo
Oliver, Juan P.
author_sort Favaro, Federico
title Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
title_short Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
title_full Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
title_fullStr Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
title_full_unstemmed Energy-Efficient Algebra Kernels in FPGA for High Performance Computing
title_sort energy-efficient algebra kernels in fpga for high performance computing
publishDate 2021
url http://sedici.unlp.edu.ar/handle/10915/128258
work_keys_str_mv AT favarofederico energyefficientalgebrakernelsinfpgaforhighperformancecomputing
AT dufrechouernesto energyefficientalgebrakernelsinfpgaforhighperformancecomputing
AT ezzattipablo energyefficientalgebrakernelsinfpgaforhighperformancecomputing
AT oliverjuanp energyefficientalgebrakernelsinfpgaforhighperformancecomputing
AT favarofederico nucleosdealgebraenergeticamenteeficientesenfpgaparacomputaciondealtasprestaciones
AT dufrechouernesto nucleosdealgebraenergeticamenteeficientesenfpgaparacomputaciondealtasprestaciones
AT ezzattipablo nucleosdealgebraenergeticamenteeficientesenfpgaparacomputaciondealtasprestaciones
AT oliverjuanp nucleosdealgebraenergeticamenteeficientesenfpgaparacomputaciondealtasprestaciones
bdutipo_str Repositorios
_version_ 1764820452184686592