Grassmann geometry of zero sets in reproducing kernel Hilbert spaces
Let ℋ be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of ℋ that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for exi...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/127807 |
| Aporte de: |
| id |
I19-R120-10915-127807 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Matemática Geodesics Grassmann manifold Reproducing kernels Analytic functions spaces Zero sets Hardy space |
| spellingShingle |
Matemática Geodesics Grassmann manifold Reproducing kernels Analytic functions spaces Zero sets Hardy space Andruchow, Esteban Chiumiento, Eduardo Hernán Varela, Alejandro Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| topic_facet |
Matemática Geodesics Grassmann manifold Reproducing kernels Analytic functions spaces Zero sets Hardy space |
| description |
Let ℋ be a reproducing kernel Hilbert space of functions on a set X. We study the problem of finding a minimal geodesic of the Grassmann manifold of ℋ that joins two subspaces consisting of functions which vanish on given finite subsets of X. We establish a necessary and sufficient condition for existence and uniqueness of geodesics, and we then analyze it in examples. We discuss the relation of the geodesic distance with other known metrics when the mentioned finite subsets are singletons. We find estimates on the upper and lower eigenvalues of the unique self-adjoint operators which define the minimal geodesics, which can be made more precise when the underlying space is the Hardy space. Also for the Hardy space we discuss the existence of geodesics joining subspaces of functions vanishing on infinite subsets of the disk, and we investigate when the product of projections onto this type of subspaces is compact. |
| format |
Articulo Preprint |
| author |
Andruchow, Esteban Chiumiento, Eduardo Hernán Varela, Alejandro |
| author_facet |
Andruchow, Esteban Chiumiento, Eduardo Hernán Varela, Alejandro |
| author_sort |
Andruchow, Esteban |
| title |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| title_short |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| title_full |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| title_fullStr |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| title_full_unstemmed |
Grassmann geometry of zero sets in reproducing kernel Hilbert spaces |
| title_sort |
grassmann geometry of zero sets in reproducing kernel hilbert spaces |
| publishDate |
2021 |
| url |
http://sedici.unlp.edu.ar/handle/10915/127807 |
| work_keys_str_mv |
AT andruchowesteban grassmanngeometryofzerosetsinreproducingkernelhilbertspaces AT chiumientoeduardohernan grassmanngeometryofzerosetsinreproducingkernelhilbertspaces AT varelaalejandro grassmanngeometryofzerosetsinreproducingkernelhilbertspaces |
| bdutipo_str |
Repositorios |
| _version_ |
1764820452409081856 |