Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data

This paper proposes a collective intelligence strategy for emerging semantic data. It presents a combination of social web practices with semantic web technologies to enrich existing web resources with semantic data. The paper introduces a social semantic tagging approach called Semdrops. Semdrops d...

Descripción completa

Detalles Bibliográficos
Autores principales: Torres, Diego, Díaz, Alicia, Skaf-Molli, Hala, Molli, Pascal
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2011
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/127418
Aporte de:
id I19-R120-10915-127418
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
World wide web
Semantic analytics
Data web
Semantic search
Semantic web
Information retrieval
Computer science
Social web
Semantic computing
Social semantic web
Web intelligence
Semantic technology
Linked data
Semantic web rule language
Collective intelligence
Semantic data model
spellingShingle Ciencias Informáticas
World wide web
Semantic analytics
Data web
Semantic search
Semantic web
Information retrieval
Computer science
Social web
Semantic computing
Social semantic web
Web intelligence
Semantic technology
Linked data
Semantic web rule language
Collective intelligence
Semantic data model
Torres, Diego
Díaz, Alicia
Skaf-Molli, Hala
Molli, Pascal
Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
topic_facet Ciencias Informáticas
World wide web
Semantic analytics
Data web
Semantic search
Semantic web
Information retrieval
Computer science
Social web
Semantic computing
Social semantic web
Web intelligence
Semantic technology
Linked data
Semantic web rule language
Collective intelligence
Semantic data model
description This paper proposes a collective intelligence strategy for emerging semantic data. It presents a combination of social web practices with semantic web technologies to enrich existing web resources with semantic data. The paper introduces a social semantic tagging approach called Semdrops. Semdrops defines a conceptual model which is an extension of the Gruber's tag model where the tag concept is extended to semantic tag. Semdrops is implemented as a Firefox add-on tool that turns the web browser into a collaborative semantic data editor. To validate Semdrops's approach, we conducted an evaluation and usability studies and compared the results with automatic generation methods of semantic data such as DBpedia. The studies demonstrated that Semdrops is an effective and complementary approach to produce adequate semantic data on the Web.
format Objeto de conferencia
Objeto de conferencia
author Torres, Diego
Díaz, Alicia
Skaf-Molli, Hala
Molli, Pascal
author_facet Torres, Diego
Díaz, Alicia
Skaf-Molli, Hala
Molli, Pascal
author_sort Torres, Diego
title Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
title_short Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
title_full Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
title_fullStr Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
title_full_unstemmed Semdrops: A Social Semantic Tagging Approach for Emerging Semantic Data
title_sort semdrops: a social semantic tagging approach for emerging semantic data
publishDate 2011
url http://sedici.unlp.edu.ar/handle/10915/127418
work_keys_str_mv AT torresdiego semdropsasocialsemantictaggingapproachforemergingsemanticdata
AT diazalicia semdropsasocialsemantictaggingapproachforemergingsemanticdata
AT skafmollihala semdropsasocialsemantictaggingapproachforemergingsemanticdata
AT mollipascal semdropsasocialsemantictaggingapproachforemergingsemanticdata
bdutipo_str Repositorios
_version_ 1764820451683467265