Quantifiers for randomness of chaotic pseudo random number generators
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their impleme...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2009
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/127088 |
| Aporte de: |
| id |
I19-R120-10915-127088 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy |
| spellingShingle |
Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy De Micco, L. Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. Quantifiers for randomness of chaotic pseudo random number generators |
| topic_facet |
Física Random number Statistical complexity Recurrence plots Rate entropy Excess entropy Permutation entropy |
| description |
We deal with randomness quantifiers and concentrate on their ability to discern the hallmark of chaos in time series used in connection with pseudo-random number generators (PRNGs). Workers in the field are motivated to use chaotic maps for generating PRNGs because of the simplicity of their implementation. Although there exist very efficient general-purpose benchmarks for testing PRNGs, we feel that the analysis provided here sheds additional didactic light on the importance of the main statistical characteristics of a chaotic map, namely (i) its invariant measure and (ii) the mixing constant. This is of help in answering two questions that arise in applications: (i) which is the best PRNG among the available ones? and (ii) if a given PRNG turns out not to be good enough and a randomization procedure must still be applied to it, which is the best applicable randomization procedure? Our answer provides a comparative analysis of several quantifiers advanced in the extant literature. |
| format |
Articulo Articulo |
| author |
De Micco, L. Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. |
| author_facet |
De Micco, L. Larrondo, Hilda A. Plastino, Ángel Ricardo Rosso, Osvaldo A. |
| author_sort |
De Micco, L. |
| title |
Quantifiers for randomness of chaotic pseudo random number generators |
| title_short |
Quantifiers for randomness of chaotic pseudo random number generators |
| title_full |
Quantifiers for randomness of chaotic pseudo random number generators |
| title_fullStr |
Quantifiers for randomness of chaotic pseudo random number generators |
| title_full_unstemmed |
Quantifiers for randomness of chaotic pseudo random number generators |
| title_sort |
quantifiers for randomness of chaotic pseudo random number generators |
| publishDate |
2009 |
| url |
http://sedici.unlp.edu.ar/handle/10915/127088 |
| work_keys_str_mv |
AT demiccol quantifiersforrandomnessofchaoticpseudorandomnumbergenerators AT larrondohildaa quantifiersforrandomnessofchaoticpseudorandomnumbergenerators AT plastinoangelricardo quantifiersforrandomnessofchaoticpseudorandomnumbergenerators AT rossoosvaldoa quantifiersforrandomnessofchaoticpseudorandomnumbergenerators |
| bdutipo_str |
Repositorios |
| _version_ |
1764820451268231168 |