Non-Abelian vortices with a twist

Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of 4-dimensional N=2 super-symmetric gauge theories. The specific model considered here posseses U(2)<sub>local</sub> x SU(2)<sub>global</sub> symmetry, with two scalar doublets...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Forgács, Péter, Lukács, Árpád, Schaposnik, Fidel Arturo
Formato: Articulo
Lenguaje:Inglés
Publicado: 2015
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/126319
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.125001
Aporte de:
id I19-R120-10915-126319
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
string solution
symmetry
spellingShingle Física
string solution
symmetry
Forgács, Péter
Lukács, Árpád
Schaposnik, Fidel Arturo
Non-Abelian vortices with a twist
topic_facet Física
string solution
symmetry
description Non-Abelian flux-tube (string) solutions carrying global currents are found in the bosonic sector of 4-dimensional N=2 super-symmetric gauge theories. The specific model considered here posseses U(2)<sub>local</sub> x SU(2)<sub>global</sub> symmetry, with two scalar doublets in the fundamental representation of SU(2). We construct string solutions that are stationary and translationally symmetric along the x<sup>3</sup> direction, and they are characterized by a matrix phase between the two doublets, referred to as "twist". Consequently, twisted strings have nonzero (global) charge, momentum, and in some cases even angular momentum per unit length. The planar cross section of a twisted string corresponds to a rotationally symmetric, charged non-Abelian vortex, satisfying 1st order Bogomolny-type equations and 2nd order Gauss-constraints. Interestingly, depending on the nature of the matrix phase, some of these solutions even break rotational symmetry in R<sup>3</sup>. Although twisted vortices have higher energy than the untwisted ones, they are expected to be linearly stable since one can maintain their charge (or twist) fixed with respect to small perturbations.
format Articulo
Articulo
author Forgács, Péter
Lukács, Árpád
Schaposnik, Fidel Arturo
author_facet Forgács, Péter
Lukács, Árpád
Schaposnik, Fidel Arturo
author_sort Forgács, Péter
title Non-Abelian vortices with a twist
title_short Non-Abelian vortices with a twist
title_full Non-Abelian vortices with a twist
title_fullStr Non-Abelian vortices with a twist
title_full_unstemmed Non-Abelian vortices with a twist
title_sort non-abelian vortices with a twist
publishDate 2015
url http://sedici.unlp.edu.ar/handle/10915/126319
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.125001
work_keys_str_mv AT forgacspeter nonabelianvorticeswithatwist
AT lukacsarpad nonabelianvorticeswithatwist
AT schaposnikfidelarturo nonabelianvorticeswithatwist
bdutipo_str Repositorios
_version_ 1764820450382184448