Thermal conductivity of anisotropic and frustrated spin-½ chains

We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosonization, and exact diagonalization of systems with N ≲ 18 sites. We present results for the tem...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heidrich Meisner, Fabián, Honecker, Andreas, Cabra, Daniel Carlos, Brenig, Wolfram
Formato: Articulo
Lenguaje:Inglés
Publicado: 2002
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/126203
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.140406
Aporte de:
id I19-R120-10915-126203
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Ciencias Exactas
thermal conductivity
Jordan-Wigner transformation
Anisotropy
spellingShingle Física
Ciencias Exactas
thermal conductivity
Jordan-Wigner transformation
Anisotropy
Heidrich Meisner, Fabián
Honecker, Andreas
Cabra, Daniel Carlos
Brenig, Wolfram
Thermal conductivity of anisotropic and frustrated spin-½ chains
topic_facet Física
Ciencias Exactas
thermal conductivity
Jordan-Wigner transformation
Anisotropy
description We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosonization, and exact diagonalization of systems with N ≲ 18 sites. We present results for the temperature dependence of the zero-frequency weight of the conductivity for several values of the anisotropy Δ. In the gapless regime, we show that the mean-field theory compares well to known results and that the low-temperature limit is correctly described by bosonization. In the antiferromagnetic and ferromagnetic gapped regime, we analyze the temperature dependence of the thermal conductivity numerically. The convergence of the finite-size data is remarkably good in the ferromagnetic case. Finally, we apply our numerical method and mean-field theory to the frustrated chain where we find a good agreement of these two approaches on finite systems. Our numerical data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case of the antiferromagnetic gapped regime of the frustrated chain.
format Articulo
Articulo
author Heidrich Meisner, Fabián
Honecker, Andreas
Cabra, Daniel Carlos
Brenig, Wolfram
author_facet Heidrich Meisner, Fabián
Honecker, Andreas
Cabra, Daniel Carlos
Brenig, Wolfram
author_sort Heidrich Meisner, Fabián
title Thermal conductivity of anisotropic and frustrated spin-½ chains
title_short Thermal conductivity of anisotropic and frustrated spin-½ chains
title_full Thermal conductivity of anisotropic and frustrated spin-½ chains
title_fullStr Thermal conductivity of anisotropic and frustrated spin-½ chains
title_full_unstemmed Thermal conductivity of anisotropic and frustrated spin-½ chains
title_sort thermal conductivity of anisotropic and frustrated spin-½ chains
publishDate 2002
url http://sedici.unlp.edu.ar/handle/10915/126203
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.66.140406
work_keys_str_mv AT heidrichmeisnerfabian thermalconductivityofanisotropicandfrustratedspin1⁄2chains
AT honeckerandreas thermalconductivityofanisotropicandfrustratedspin1⁄2chains
AT cabradanielcarlos thermalconductivityofanisotropicandfrustratedspin1⁄2chains
AT brenigwolfram thermalconductivityofanisotropicandfrustratedspin1⁄2chains
bdutipo_str Repositorios
_version_ 1764820450192392192