A Performance Prediction Module for Workflow Scheduling
Through the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mecha...
Autores principales: | , , , |
---|---|
Formato: | Objeto de conferencia |
Lenguaje: | Inglés |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/126141 https://40jaiio.sadio.org.ar/sites/default/files/T2011/HPC/1102.pdf |
Aporte de: |
id |
I19-R120-10915-126141 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Ciencias Informáticas Workflow Scheduling Performance Prediction Nonparametric Regression |
spellingShingle |
Ciencias Informáticas Workflow Scheduling Performance Prediction Nonparametric Regression Monge, David A. Bělohradský, Jiří García Garino, Carlos Železný, Filip A Performance Prediction Module for Workflow Scheduling |
topic_facet |
Ciencias Informáticas Workflow Scheduling Performance Prediction Nonparametric Regression |
description |
Through the years, scientific applications have demanded more powerful and sophisticated computing environments and management techniques. Workflows facilitated the design and management of scientific applications. The complexity of to day's workflows demand a high amount of resources and mechanisms for provisioning them. The execution of scientific workflow applications is a complex task and depends on how the resources are assigned. Scheduling is the name given to the process that assigns computing resources to the tasks comprised in a workflow. This work presents a scheduling algorithm (PPSA) for workflows tightly coupled to a performance prediction module (PEM). A set of experiments was developed for measuring the performance of the algorithm using the information provided by the proposed performance module. The proposed algorithm is compared with an algorithm included in the well-known workflow middlewares Condor DAGMan and ASKALON. |
format |
Objeto de conferencia Objeto de conferencia |
author |
Monge, David A. Bělohradský, Jiří García Garino, Carlos Železný, Filip |
author_facet |
Monge, David A. Bělohradský, Jiří García Garino, Carlos Železný, Filip |
author_sort |
Monge, David A. |
title |
A Performance Prediction Module for Workflow Scheduling |
title_short |
A Performance Prediction Module for Workflow Scheduling |
title_full |
A Performance Prediction Module for Workflow Scheduling |
title_fullStr |
A Performance Prediction Module for Workflow Scheduling |
title_full_unstemmed |
A Performance Prediction Module for Workflow Scheduling |
title_sort |
performance prediction module for workflow scheduling |
publishDate |
2011 |
url |
http://sedici.unlp.edu.ar/handle/10915/126141 https://40jaiio.sadio.org.ar/sites/default/files/T2011/HPC/1102.pdf |
work_keys_str_mv |
AT mongedavida aperformancepredictionmoduleforworkflowscheduling AT belohradskyjiri aperformancepredictionmoduleforworkflowscheduling AT garciagarinocarlos aperformancepredictionmoduleforworkflowscheduling AT zeleznyfilip aperformancepredictionmoduleforworkflowscheduling AT mongedavida performancepredictionmoduleforworkflowscheduling AT belohradskyjiri performancepredictionmoduleforworkflowscheduling AT garciagarinocarlos performancepredictionmoduleforworkflowscheduling AT zeleznyfilip performancepredictionmoduleforworkflowscheduling |
bdutipo_str |
Repositorios |
_version_ |
1764820450135769090 |